IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/23-12.html
   My bibliography  Save this paper

Nonparametric estimation of a periodic sequence in the presence of a smooth trend

Author

Listed:
  • Oliver Linton
  • Michael Vogt

Abstract

In this paper, we study a nonparametric regression model including a periodic component, a smooth trend function, and a stochastic error term. We propose a procedure to estimate the unknown period and the function values of the periodic component as well as the nonparametric trend function. The theoretical part of the paper establishes the asymptotic properties of our estimators. In particular, we show that our estimator of the period is consistent. In addition, we derive the convergence rates as well as the limiting distributions of our estimators of the periodic component and the trend function. The asymptotic results are complemented with a simulation study that investigates the small sample behaviour of our procedure. Finally, we illustrate our method by applying it to a series of global temperature anomalies.

Suggested Citation

  • Oliver Linton & Michael Vogt, 2012. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," CeMMAP working papers 23/12, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:23/12
    DOI: 10.1920/wp.cem.2012.2312
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP2312.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2012.2312?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Kristensen, Dennis, 2009. "Uniform Convergence Rates Of Kernel Estimators With Heterogeneous Dependent Data," Econometric Theory, Cambridge University Press, vol. 25(5), pages 1433-1445, October.
    2. Newey, Whitney & West, Kenneth, 2014. "A simple, positive semi-definite, heteroscedasticity and autocorrelation consistent covariance matrix," Applied Econometrics, Russian Presidential Academy of National Economy and Public Administration (RANEPA), vol. 33(1), pages 125-132.
    3. Peter Hall & Ming Li, 2006. "Using the periodogram to estimate period in nonparametric regression," Biometrika, Biometrika Trust, vol. 93(2), pages 411-424, June.
    4. Robert M. De Jong & James Davidson, 2000. "Consistency of Kernel Estimators of Heteroscedastic and Autocorrelated Covariance Matrices," Econometrica, Econometric Society, vol. 68(2), pages 407-424, March.
    5. Elisabeth Gassiat & Céline Lévy‐Leduc, 2006. "Efficient Semiparametric Estimation of the Periods in a Superposition of Periodic Functions with Unknown Shape," Journal of Time Series Analysis, Wiley Blackwell, vol. 27(6), pages 877-910, November.
    6. Peter Hall & Jiying Yin, 2003. "Nonparametric methods for deconvolving multiperiodic functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(4), pages 869-886, November.
    7. Michael Vogt, 2012. "Nonparametric regression for locally stationary time series," CeMMAP working papers CWP22/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    8. Marc G. Genton & Peter Hall, 2007. "Statistical inference for evolving periodic functions," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(4), pages 643-657, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Vogt & Oliver Linton, 2014. "Nonparametric estimation of a periodic sequence in the presence of a smooth trend," Biometrika, Biometrika Trust, vol. 101(1), pages 121-140.
    2. Paulo M. D. C. Parente & Richard J. Smith, 2021. "Quasi‐maximum likelihood and the kernel block bootstrap for nonlinear dynamic models," Journal of Time Series Analysis, Wiley Blackwell, vol. 42(4), pages 377-405, July.
    3. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    4. David T. Frazier & Bonsoo Koo, 2020. "Indirect Inference for Locally Stationary Models," Monash Econometrics and Business Statistics Working Papers 30/20, Monash University, Department of Econometrics and Business Statistics.
    5. Michael Jansson & Marcelo J. Moreira, 2006. "Optimal Inference in Regression Models with Nearly Integrated Regressors," Econometrica, Econometric Society, vol. 74(3), pages 681-714, May.
    6. Federico Belotti & Alessandro Casini & Leopoldo Catania & Stefano Grassi & Pierre Perron, 2023. "Simultaneous bandwidths determination for DK-HAC estimators and long-run variance estimation in nonparametric settings," Econometric Reviews, Taylor & Francis Journals, vol. 42(3), pages 281-306, February.
    7. de Castro, Luciano & Galvao, Antonio F. & Kaplan, David M. & Liu, Xin, 2019. "Smoothed GMM for quantile models," Journal of Econometrics, Elsevier, vol. 213(1), pages 121-144.
    8. J. Isaac Miller, 2010. "Cointegrating regressions with messy regressors and an application to mixed‐frequency series," Journal of Time Series Analysis, Wiley Blackwell, vol. 31(4), pages 255-277, July.
    9. Hirukawa, Masayuki, 2023. "Robust Covariance Matrix Estimation in Time Series: A Review," Econometrics and Statistics, Elsevier, vol. 27(C), pages 36-61.
    10. Arthur Pewsey & Eduardo García-Portugués, 2021. "Recent advances in directional statistics," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 30(1), pages 1-58, March.
    11. Casini, Alessandro, 2023. "Theory of evolutionary spectra for heteroskedasticity and autocorrelation robust inference in possibly misspecified and nonstationary models," Journal of Econometrics, Elsevier, vol. 235(2), pages 372-392.
    12. Jonathan B. Hill & Artyom Shneyerov, 2009. "Are There Common Values in BC Timber Sales? A Tail-Index Nonparametric Test," Working Papers 09003, Concordia University, Department of Economics.
    13. Linton, Oliver & Wu, Jianbin, 2020. "A coupled component DCS-EGARCH model for intraday and overnight volatility," Journal of Econometrics, Elsevier, vol. 217(1), pages 176-201.
    14. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    15. Hill, Jonathan B. & Shneyerov, Artyom, 2013. "Are there common values in first-price auctions? A tail-index nonparametric test," Journal of Econometrics, Elsevier, vol. 174(2), pages 144-164.
    16. Peter C.B. Phillips & Yixiao Sun & Sainan Jin, 2005. "Improved HAR Inference," Cowles Foundation Discussion Papers 1513, Cowles Foundation for Research in Economics, Yale University.
    17. Massimiliano Marcellino & Barbara Rossi, 2008. "Model Selection for Nested and Overlapping Nonlinear, Dynamic and Possibly Mis‐specified Models," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 70(s1), pages 867-893, December.
    18. Cho, Cheol-Keun & Amsler, Christine & Schmidt, Peter, 2015. "A test of the null of integer integration against the alternative of fractional integration," Journal of Econometrics, Elsevier, vol. 187(1), pages 217-237.
    19. Christis Hassapis, 2003. "Financial variables and real activity in Canada," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 36(2), pages 421-442, May.
    20. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:23/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.