IDEAS home Printed from https://ideas.repec.org/p/azt/cemmap/01-17.html
   My bibliography  Save this paper

A bootstrap method for constructing pointwise and uniform confidence bands for conditional quantile functions

Author

Listed:
  • Joel L. Horowitz
  • Anand Krishnamurthy

Abstract

This paper is concerned with inference about the conditional quantile function in a nonparametric quantile regression model. Any method for constructing a confidence interval or band for this function must deal with the asymptotic bias of nonparametric estimators of the function. In estimation methods such as local polynomial estimation, this is usually done through undersmoothing or explicit bias correction. The latter usually requires oversmoothing. However, there are no satisfactory empirical methods for selecting bandwidths that under- or oversmooth. This paper extends the bootstrap method of Hall and Horowitz (2013) for conditional mean functions to conditional quantile functions. The paper also shows how the bootstrap method can be used to obtain uniform confidence bands. The bootstrap method uses only bandwidths that are selected by standard methods such as cross validation and plug-in. It does not use under- or oversmoothing. The results of Monte Carlo experiments illustrate the numerical performance of the bootstrap method.

Suggested Citation

  • Joel L. Horowitz & Anand Krishnamurthy, 2017. "A bootstrap method for constructing pointwise and uniform confidence bands for conditional quantile functions," CeMMAP working papers 01/17, Institute for Fiscal Studies.
  • Handle: RePEc:azt:cemmap:01/17
    DOI: 10.1920/wp.cem.2017.0117
    as

    Download full text from publisher

    File URL: https://www.cemmap.ac.uk/wp-content/uploads/2020/08/CWP0117.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.1920/wp.cem.2017.0117?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. McMurry, Timothy L. & Politis, Dimitris N., 2008. "Bootstrap confidence intervals in nonparametric regression with built-in bias correction," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2463-2469, October.
    2. Guerre, Emmanuel & Sabbah, Camille, 2012. "Uniform Bias Study And Bahadur Representation For Local Polynomial Estimators Of The Conditional Quantile Function," Econometric Theory, Cambridge University Press, vol. 28(1), pages 87-129, February.
    3. Härdle, Wolfgang & Huet, Sylvie & Mammen, Enno & Sperlich, Stefan, 2004. "Bootstrap Inference In Semiparametric Generalized Additive Models," Econometric Theory, Cambridge University Press, vol. 20(2), pages 265-300, April.
    4. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    5. Song Xi Chen & Wolfgang Härdle & Ming Li, 2003. "An empirical likelihood goodness‐of‐fit test for time series," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 65(3), pages 663-678, August.
    6. Y. Xia, 1998. "Bias‐corrected confidence bands in nonparametric regression," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 60(4), pages 797-811.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Joel L. Horowitz & Anand Krishnamurthy, 2017. "A bootstrap method for constructing pointwise and uniform confidence bands for conditional quantile functions," CeMMAP working papers CWP01/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    3. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    4. Shih-Kang Chao & Katharina Proksch & Holger Dette & Wolfgang Karl Härdle, 2017. "Confidence Corridors for Multivariate Generalized Quantile Regression," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 35(1), pages 70-85, January.
    5. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    6. repec:hum:wpaper:sfb649dp2014-028 is not listed on IDEAS
    7. Kato, Kengo & Sasaki, Yuya, 2019. "Uniform confidence bands for nonparametric errors-in-variables regression," Journal of Econometrics, Elsevier, vol. 213(2), pages 516-555.
    8. repec:hum:wpaper:sfb649dp2015-031 is not listed on IDEAS
    9. Fan, Yanqin & Liu, Ruixuan, 2016. "A direct approach to inference in nonparametric and semiparametric quantile models," Journal of Econometrics, Elsevier, vol. 191(1), pages 196-216.
    10. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    11. Suneel Babu Chatla, 2023. "Nonparametric inference for additive models estimated via simplified smooth backfitting," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(1), pages 71-97, February.
    12. Gospodinov, Nikolay & Otsu, Taisuke, 2012. "Local GMM estimation of time series models with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 170(2), pages 476-490.
    13. Kun Yi & Yoshihiko Nishiyama, 2022. "Smoothed bootstrapping kernel density estimation under higher order kernel," KIER Working Papers 1081, Kyoto University, Institute of Economic Research.
    14. Mammen, Enno & Van Keilegom, Ingrid & Yu, Kyusang, 2013. "Expansion for Moments of Regression Quantiles with Applications to Nonparametric Testing," LIDAM Discussion Papers ISBA 2013027, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
    15. Bellemare, C. & Melenberg, B. & van Soest, A.H.O., 2002. "Semi-parametric Models for Satisfaction with Income," Discussion Paper 2002-87, Tilburg University, Center for Economic Research.
    16. Politis, Dimitris N, 2010. "Model-free Model-fitting and Predictive Distributions," University of California at San Diego, Economics Working Paper Series qt67j6s174, Department of Economics, UC San Diego.
    17. Delsol, Laurent & Ferraty, Frédéric & Vieu, Philippe, 2011. "Structural test in regression on functional variables," Journal of Multivariate Analysis, Elsevier, vol. 102(3), pages 422-447, March.
    18. Rui Hua & Wenhao Gui, 2022. "Revisit to progressively Type-II censored competing risks data from Lomax distributions," Journal of Risk and Reliability, , vol. 236(3), pages 377-394, June.
    19. Horowitz, Joel L. & Lee, Sokbae, 2017. "Nonparametric estimation and inference under shape restrictions," Journal of Econometrics, Elsevier, vol. 201(1), pages 108-126.
    20. Gao, Jiti & King, Maxwell, 2003. "Estimation and model specification testing in nonparametric and semiparametric econometric models," MPRA Paper 11989, University Library of Munich, Germany, revised Feb 2006.
    21. Kato, Kengo & Sasaki, Yuya, 2018. "Uniform confidence bands in deconvolution with unknown error distribution," Journal of Econometrics, Elsevier, vol. 207(1), pages 129-161.
    22. Xu Guo & Tao Wang & Lixing Zhu, 2016. "Model checking for parametric single-index models: a dimension reduction model-adaptive approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 78(5), pages 1013-1035, November.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:azt:cemmap:01/17. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Dermot Watson (email available below). General contact details of provider: https://edirc.repec.org/data/ifsssuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.