IDEAS home Printed from https://ideas.repec.org/p/ifs/cemmap/14-12.html
   My bibliography  Save this paper

A simple bootstrap method for constructing nonparametric confidence bands for functions

Author

Listed:
  • Peter Hall

    (Institute for Fiscal Studies)

  • Joel L. Horowitz

    (Institute for Fiscal Studies and Northwestern University)

Abstract

Standard approaches to constructing nonparametric confidence bands for functions are frustrated by the impact of bias, which generally is not estimated consistently when using the bootstrap and conventionally smoothed function estimators. To overcome this problem it is common practice to either undersmooth, so as to reduce the impact of bias, or oversmooth, and thereby introduce an explicit or implicit bias estimator. However, these approaches, and others based on nonstandard smoothing methods, complicate the process of inference, for example by requiring the choice of new, unconventional smoothing parameters and, in the case of undersmoothing, producing relatively wide bands. In this paper we suggest a new approach, which exploits to our advantage one of the difficulties that, in the past, has prevented an attractive solution to this problem - the fact that the standard bootstrap bias estimator suffers from relatively high-frequency stochastic error. The high frequency, together with a technique based on quantiles, can be exploited to dampen down the stochastic error term, leading to relatively narrow, simple-to-construct confidence bands.

Suggested Citation

  • Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP14/12, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
  • Handle: RePEc:ifs:cemmap:14/12
    as

    Download full text from publisher

    File URL: http://www.cemmap.ac.uk/wps/cwp141212.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cai, T. Tony & Levine, Michael & Wang, Lie, 2009. "Variance function estimation in multivariate nonparametric regression with fixed design," Journal of Multivariate Analysis, Elsevier, vol. 100(1), pages 126-136, January.
    2. Tiejun Tong & Yuedong Wang, 2005. "Estimating residual variance in nonparametric regression using least squares," Biometrika, Biometrika Trust, vol. 92(4), pages 821-830, December.
    3. McMurry, Timothy L. & Politis, Dimitris N., 2008. "Bootstrap confidence intervals in nonparametric regression with built-in bias correction," Statistics & Probability Letters, Elsevier, vol. 78(15), pages 2463-2469, October.
    4. Hardle, W. & Huet, S. & Jolivet, E., 1991. "Better Bootstrap Confidence Intervals for Regression Curve Estimation," LIDAM Discussion Papers CORE 1991056, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    5. Hardle, W. & Marron, J., 1989. "Bootstrap Simultaneous Error Bars For Nonparametric Regression," LIDAM Discussion Papers CORE 1989023, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    6. Axel Munk & Nicolai Bissantz & Thorsten Wagner & Gudrun Freitag, 2005. "On difference‐based variance estimation in nonparametric regression when the covariate is high dimensional," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 67(1), pages 19-41, February.
    7. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    2. Sarnetzki, Florian & Dzemski, Andreas, 2014. "Overidentification test in a nonparametric treatment model with unobserved heterogeneity," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100620, Verein für Socialpolitik / German Economic Association.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peter Hall & Joel L. Horowitz, 2012. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 14/12, Institute for Fiscal Studies.
    2. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers CWP29/13, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    3. Peter Hall & Joel L. Horowitz, 2013. "A simple bootstrap method for constructing nonparametric confidence bands for functions," CeMMAP working papers 29/13, Institute for Fiscal Studies.
    4. Liitiäinen, Elia & Corona, Francesco & Lendasse, Amaury, 2010. "Residual variance estimation using a nearest neighbor statistic," Journal of Multivariate Analysis, Elsevier, vol. 101(4), pages 811-823, April.
    5. Politis, Dimitris N, 2010. "Model-free Model-fitting and Predictive Distributions," University of California at San Diego, Economics Working Paper Series qt67j6s174, Department of Economics, UC San Diego.
    6. Jingxin Zhao & Heng Peng & Tao Huang, 2018. "Variance estimation for semiparametric regression models by local averaging," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 453-476, June.
    7. Levine, Michael, 2015. "Minimax rate of convergence for an estimator of the functional component in a semiparametric multivariate partially linear model," Journal of Multivariate Analysis, Elsevier, vol. 140(C), pages 283-290.
    8. Paola Gloria Ferrario, 2018. "Partitioning estimation of local variance based on nearest neighbors under censoring," Statistical Papers, Springer, vol. 59(2), pages 423-447, June.
    9. Eckhard Liebscher, 2012. "Model checks for parametric regression models," TEST: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 21(1), pages 132-155, March.
    10. P. G. Ferrario & H. Walk, 2012. "Nonparametric partitioning estimation of residual and local variance based on first and second nearest neighbours," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(4), pages 1019-1039, December.
    11. Wang, WenWu & Yu, Ping, 2017. "Asymptotically optimal differenced estimators of error variance in nonparametric regression," Computational Statistics & Data Analysis, Elsevier, vol. 105(C), pages 125-143.
    12. WenWu Wang & Lu Lin & Li Yu, 2017. "Optimal variance estimation based on lagged second-order difference in nonparametric regression," Computational Statistics, Springer, vol. 32(3), pages 1047-1063, September.
    13. Severance-Lossin, E. & Sperlich, S., 1995. "Estimation of Derivatives for Additive Separable Models," SFB 373 Discussion Papers 1995,60, Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes.
    14. Patrick Krennmair & Timo Schmid, 2022. "Flexible domain prediction using mixed effects random forests," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(5), pages 1865-1894, November.
    15. Yuejin Zhou & Yebin Cheng & Wenlin Dai & Tiejun Tong, 2018. "Optimal difference-based estimation for partially linear models," Computational Statistics, Springer, vol. 33(2), pages 863-885, June.
    16. Lu Lin & Feng Li, 2008. "Stable and bias-corrected estimation for nonparametric regression models," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 20(4), pages 283-303.
    17. Mendez, Guillermo & Lohr, Sharon, 2011. "Estimating residual variance in random forest regression," Computational Statistics & Data Analysis, Elsevier, vol. 55(11), pages 2937-2950, November.
    18. Grith, Maria & Härdle, Wolfgang Karl & Kneip, Alois & Wagner, Heiko, 2016. "Functional principal component analysis for derivatives of multivariate curves," SFB 649 Discussion Papers 2016-033, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    19. Bissantz, Nicolai & Birke, Melanie, 2008. "Asymptotic normality and confidence intervals for inverse regression models with convolution-type operators," Technical Reports 2008,17, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    20. Qian, Junhui & Wang, Le, 2012. "Estimating semiparametric panel data models by marginal integration," Journal of Econometrics, Elsevier, vol. 167(2), pages 483-493.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:ifs:cemmap:14/12. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Emma Hyman (email available below). General contact details of provider: https://edirc.repec.org/data/cmifsuk.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.