IDEAS home Printed from https://ideas.repec.org/a/sae/enejou/v42y2021i5p41-66.html
   My bibliography  Save this article

Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios

Author

Listed:
  • Karlo Hainsch
  • Thorsten Burandt
  • Konstantin Loffler
  • Claudia Kemfert
  • Pao-Yu Oei
  • Christian von Hirschhausen

Abstract

The aim of this paper is to showcase different decarbonization pathways for Europe with varying Carbon dioxide (CO2) constraints until 2050. The Global Energy System Model (GENeSYS-MOD) framework, a linear mathematical optimization model, is used to compute low-carbon scenarios for 17 European countries or regions. The sectors power, low-and high-temperature heating, and passenger and freight transportation are included, with the model endogenously constructing capacities in each period. Emission constraints differ between different scenarios and are either optimized endogenously by the model, or distributed on a per-capita basis, GDP-dependent, or based on current emissions. The results show a rapid phase-in of renewable energies, if a carbon budget in line with established international climate targets is chosen. It can be shown that the achievement of the 2° target can be met with low additional costs compared to the business as usual case, while reducing total emissions by more than 30%

Suggested Citation

  • Karlo Hainsch & Thorsten Burandt & Konstantin Loffler & Claudia Kemfert & Pao-Yu Oei & Christian von Hirschhausen, 2021. "Emission Pathways Towards a Low-Carbon Energy System for Europe: A Model-Based Analysis of Decarbonization Scenarios," The Energy Journal, , vol. 42(5), pages 41-66, September.
  • Handle: RePEc:sae:enejou:v:42:y:2021:i:5:p:41-66
    DOI: 10.5547/01956574.42.5.khai
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.5547/01956574.42.5.khai
    Download Restriction: no

    File URL: https://libkey.io/10.5547/01956574.42.5.khai?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Konstantin Löffler & Karlo Hainsch & Thorsten Burandt & Pao-Yu Oei & Claudia Kemfert & Christian Von Hirschhausen, 2017. "Designing a Model for the Global Energy System—GENeSYS-MOD: An Application of the Open-Source Energy Modeling System (OSeMOSYS)," Energies, MDPI, vol. 10(10), pages 1-28, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gerbaulet, Clemens & von Hirschhausen, Christian & Kemfert, Claudia & Lorenz, Casimir & Oei, Pao-Yu, 2019. "European electricity sector decarbonization under different levels of foresight," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 141, pages 973-987.
    2. Blanco, Herib & Gómez Vilchez, Jonatan J. & Nijs, Wouter & Thiel, Christian & Faaij, André, 2019. "Soft-linking of a behavioral model for transport with energy system cost optimization applied to hydrogen in EU," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    3. Oei, Pao-Yu & Hermann, Hauke & Herpich, Philipp & Holtemöller, Oliver & Lünenbürger, Benjamin & Schult, Christoph, 2020. "Coal phase-out in Germany – Implications and policies for affected regions," Energy, Elsevier, vol. 196(C).
    4. Giarola, Sara & Molar-Cruz, Anahi & Vaillancourt, Kathleen & Bahn, Olivier & Sarmiento, Luis & Hawkes, Adam & Brown, Maxwell, 2021. "The role of energy storage in the uptake of renewable energy: A model comparison approach," Energy Policy, Elsevier, vol. 151(C).
    5. Yue, Xiufeng & Patankar, Neha & Decarolis, Joseph & Chiodi, Alessandro & Rogan, Fionn & Deane, J.P. & O’Gallachoir, Brian, 2020. "Least cost energy system pathways towards 100% renewable energy in Ireland by 2050," Energy, Elsevier, vol. 207(C).
    6. Plazas-Niño, F.A. & Ortiz-Pimiento, N.R. & Montes-Páez, E.G., 2022. "National energy system optimization modelling for decarbonization pathways analysis: A systematic literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Limpens, Gauthier & Rixhon, Xavier & Contino, Francesco & Jeanmart, Hervé, 2024. "EnergyScope Pathway: An open-source model to optimise the energy transition pathways of a regional whole-energy system," Applied Energy, Elsevier, vol. 358(C).
    8. Heggarty, Thomas & Bourmaud, Jean-Yves & Girard, Robin & Kariniotakis, Georges, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Energy, Elsevier, vol. 290(C).
    9. Thomas Heggarty & Jean-Yves Bourmaud & Robin Girard & Georges Kariniotakis, 2024. "Assessing the relative impacts of maximum investment rate and temporal detail in capacity expansion models applied to power systems," Post-Print hal-04383397, HAL.
    10. Prina, Matteo Giacomo & Nastasi, Benedetto & Groppi, Daniele & Misconel, Steffi & Garcia, Davide Astiaso & Sparber, Wolfram, 2022. "Comparison methods of energy system frameworks, models and scenario results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    11. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    12. Oyewo, Ayobami S. & Aghahosseini, Arman & Movsessian, Maria M. & Breyer, Christian, 2024. "A novel geothermal-PV led energy system analysis on the case of the central American countries Guatemala, Honduras, and Costa Rica," Renewable Energy, Elsevier, vol. 221(C).
    13. Oyewo, Ayobami Solomon & Aghahosseini, Arman & Ram, Manish & Breyer, Christian, 2020. "Transition towards decarbonised power systems and its socio-economic impacts in West Africa," Renewable Energy, Elsevier, vol. 154(C), pages 1092-1112.
    14. Löffler, Konstantin & Burandt, Thorsten & Hainsch, Karlo & Oei, Pao-Yu & Seehaus, Frederik & Wejda, Felix, 2022. "Chances and barriers for Germany's low carbon transition - Quantifying uncertainties in key influential factors," Energy, Elsevier, vol. 239(PA).
    15. Chang, Miguel & Thellufsen, Jakob Zink & Zakeri, Behnam & Pickering, Bryn & Pfenninger, Stefan & Lund, Henrik & Østergaard, Poul Alberg, 2021. "Trends in tools and approaches for modelling the energy transition," Applied Energy, Elsevier, vol. 290(C).
    16. Kueppers, Martin & Paredes Pineda, Stephany Nicole & Metzger, Michael & Huber, Matthias & Paulus, Simon & Heger, Hans Joerg & Niessen, Stefan, 2021. "Decarbonization pathways of worldwide energy systems – Definition and modeling of archetypes," Applied Energy, Elsevier, vol. 285(C).
    17. Herpich, Philipp & Löffler, Konstantin & Hainsch, Karlo & Hanto, Jonathan & Moskalenko, Nikita, 2024. "100% renewable heat supply in Berlin by 2050 – A model-based approach," Applied Energy, Elsevier, vol. 375(C).
    18. Bogdanov, Dmitrii & Ram, Manish & Aghahosseini, Arman & Gulagi, Ashish & Oyewo, Ayobami Solomon & Child, Michael & Caldera, Upeksha & Sadovskaia, Kristina & Farfan, Javier & De Souza Noel Simas Barbos, 2021. "Low-cost renewable electricity as the key driver of the global energy transition towards sustainability," Energy, Elsevier, vol. 227(C).
    19. Lopez, Gabriel & Aghahosseini, Arman & Child, Michael & Khalili, Siavash & Fasihi, Mahdi & Bogdanov, Dmitrii & Breyer, Christian, 2022. "Impacts of model structure, framework, and flexibility on perspectives of 100% renewable energy transition decision-making," Renewable and Sustainable Energy Reviews, Elsevier, vol. 164(C).
    20. Hansen, Kenneth & Breyer, Christian & Lund, Henrik, 2019. "Status and perspectives on 100% renewable energy systems," Energy, Elsevier, vol. 175(C), pages 471-480.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:enejou:v:42:y:2021:i:5:p:41-66. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.