IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/eres2017_226.html
   My bibliography  Save this paper

Is there room for another hedonic model? –The advantages of the GAMLSS approach in real estate research

Author

Listed:
  • Marcelo Cajias

Abstract

Hedonic modelling is essential for institutional investors, researchers and urban policy-makers in order to identify the factors affecting the value and future development of rents over time and space. While statistical models in this field have advanced substantially over the last decades, new statistical approaches have emerged expanding the conventional understanding of real estate markets. This paper explores the in-sample explanatory and out-of-sample forecasting accuracy of the Generalized Additive Model for Location, Scale and Shape (GAMLSS) model in contrast to traditional methods in Munich’s residential market. The results show that the complexity of asking rents in Munich is more accurately captured by the GAMLSS approach, leading to a significant increase in the out-of-sample forecasting accuracy.

Suggested Citation

  • Marcelo Cajias, 2017. "Is there room for another hedonic model? –The advantages of the GAMLSS approach in real estate research," ERES eres2017_226, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:eres2017_226
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/oai-eres-id-eres2017-226
    Download Restriction: no

    File URL: https://eres.architexturez.net/system/files/P_20170115191957_982.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chihiro Shimizu & Kiyohiko G Nishimura & Tsutomu Watanabe1, 2012. "House prices from magazines, realtors,and the Land Registry," BIS Papers chapters, in: Bank for International Settlements (ed.), Property markets and financial stability, volume 64, pages 29-38, Bank for International Settlements.
    2. Bank for International Settlements, 2012. "Property markets and financial stability," BIS Papers, Bank for International Settlements, number 64.
    3. Ti-Ching Peng & Ying-Hui Chiang, 2015. "The non-linearity of hospitals' proximity on property prices: experiences from Taipei, Taiwan," Journal of Property Research, Taylor & Francis Journals, vol. 32(4), pages 341-361, December.
    4. Alexander Razen & Wolfgang Brunauer & Nadja Klein & Thomas Kneib & Stefan Lang & Nikolaus Umlauf, 2014. "Statistical Risk Analysis for Real Estate Collateral Valuation using Bayesian Distributional and Quantile Regression," Working Papers 2014-12, Faculty of Economics and Statistics, Universität Innsbruck.
    5. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    6. John M. Clapp & Jeffrey P. Cohen & Cletus C. Coughlin, 2015. "Local Polynomial Regressions versus OLS for Generating Location Value Estimates: Which is More Efficient in Out-of-Sample Forecasts?," Working Papers 2015-14, Federal Reserve Bank of St. Louis.
    7. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    8. M. McCord & P.T. Davis & M. Haran & D. McIlhatton & J. McCord, 2014. "Understanding rental prices in the UK: a comparative application of spatial modelling approaches," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 7(1), pages 98-128, February.
    9. Krzysztof Chrostek & Katarzyna Kopczewska, 2013. "Spatial Prediction Models for Real Estate Market Analysis," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 35.
    10. Serinaldi, Francesco, 2011. "Distributional modeling and short-term forecasting of electricity prices by Generalized Additive Models for Location, Scale and Shape," Energy Economics, Elsevier, vol. 33(6), pages 1216-1226.
    11. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    12. Widłak, Marta & Waszczuk, Joanna & Olszewski, Krzysztof, 2014. "Spatial and hedonic analysis of house price dynamics in Warsaw," MPRA Paper 60479, University Library of Munich, Germany.
    13. R. A. Rigby & D. M. Stasinopoulos, 2005. "Generalized additive models for location, scale and shape," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 54(3), pages 507-554, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    2. Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
    3. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    4. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    5. Alice Barreca & Rocco Curto & Diana Rolando, 2018. "Housing Vulnerability and Property Prices: Spatial Analyses in the Turin Real Estate Market," Sustainability, MDPI, vol. 10(9), pages 1-20, August.
    6. Marco Locurcio & Pierluigi Morano & Francesco Tajani & Felicia Di Liddo, 2020. "An Innovative GIS-Based Territorial Information Tool for the Evaluation of Corporate Properties: An Application to the Italian Context," Sustainability, MDPI, vol. 12(14), pages 1-29, July.
    7. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    8. Alice Barreca & Elena Fregonara & Diana Rolando, 2021. "EPC Labels and Building Features: Spatial Implications over Housing Prices," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    9. Rocco Curto & Elena Fregonara, 2019. "Monitoring and Analysis of the Real Estate Market in a Social Perspective: Results from the Turin’s (Italy) Experience," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    10. Alice Barreca & Rocco Curto & Diana Rolando, 2020. "Urban Vibrancy: An Emerging Factor that Spatially Influences the Real Estate Market," Sustainability, MDPI, vol. 12(1), pages 1-23, January.
    11. Monica Palma & Claudia Cappello & Sandra De Iaco & Daniela Pellegrino, 2019. "The residential real estate market in Italy: a spatio-temporal analysis," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(5), pages 2451-2472, September.
    12. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    13. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    14. Damian Przekop, 2022. "Artificial Neural Networks vs Spatial Regression Approach in Property Valuation," Central European Journal of Economic Modelling and Econometrics, Central European Journal of Economic Modelling and Econometrics, vol. 14(2), pages 199-223, June.
    15. José-María Montero & Román Mínguez & Gema Fernández-Avilés, 2018. "Housing price prediction: parametric versus semi-parametric spatial hedonic models," Journal of Geographical Systems, Springer, vol. 20(1), pages 27-55, January.
    16. Jacek Batóg & Iwona Foryś & Radosław Gaca & Michał Głuszak & Jan Konowalczuk, 2019. "Investigating the Impact of Airport Noise and Land Use Restrictions on House Prices: Evidence from Selected Regional Airports in Poland," Sustainability, MDPI, vol. 11(2), pages 1-18, January.
    17. Jan-Peter Kucklick & Jennifer Priefer & Daniel Beverungen & Oliver Müller, 2023. "Elucidating the Predictive Power of Search and Experience Qualities for Pricing of Complex Goods – A Machine Learning-based Study on Real Estate Appraisal," Working Papers Dissertations 112, Paderborn University, Faculty of Business Administration and Economics.
    18. Micha{l} Narajewski & Florian Ziel, 2020. "Ensemble Forecasting for Intraday Electricity Prices: Simulating Trajectories," Papers 2005.01365, arXiv.org, revised Aug 2020.
    19. Karl L. Guntermann & Crocker Liu & Adam Nowak, 2014. "Repeat Sales Methods for Growing Cities and Short Horizons," Working Papers 14-20, Department of Economics, West Virginia University.
    20. Stanislav Endel & Marek Teichmann & Dagmar Kutá, 2020. "Possibilities of House Valuation Automation in the Czech Republic," Sustainability, MDPI, vol. 12(18), pages 1-13, September.

    More about this item

    Keywords

    GAM; GAMLSS; Hedonic Modelling; Out-of-sample bootstrap; Residential Housing;
    All these keywords.

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:eres2017_226. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.