IDEAS home Printed from https://ideas.repec.org/p/arz/wpaper/eres2011_142.html
   My bibliography  Save this paper

Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering

Author

Listed:
  • Marko Kryvobokov

Abstract

The purpose of the paper is to verify whether the version of neighbourhoods created from the lowest geographical level improve a predictive accuracy of hedonic model in comparison with those based on upper geographical levels. Methodology/approach ñ The paper proposes a method for defining neighbourhoods from Thiessen polygons created around the points of apartments. These polygons occupy the whole analysed area and are used as the spatial units for clustering. The clustering technique is based on contiguity of polygons and fuzzy equality of the principal components of their attributes. Clustering is started at different geographical levels: municipalities, smaller traffic analysis zones, and apartmentsí Thiessen polygons. The ordinary least squares (OLS) and spatial error techniques are applied in hedonic price models with different versions of neighbourhoods. Originality/value ñ Neighbourhoods can be defined using the Thiessen polygons of individual observations. This very ìbottom upî approach can minimise dependency from existing political, administrative and other boundaries. The clustering technique is based on fuzzy equality and does not need the a priori determination of a number of clusters, while contiguity and hierarchical nature of neighbourhoods are considered. Findings ñ With OLS regression, the superiority of Thiessen polygons is evident in both in-sample analysis and ex-sample prediction. When we control for spatial effect with a spatial error technique, the clusters of Thiessen polygons do not always provide the best outcome, and their superiority is contested by the highest geographical level of municipalities.

Suggested Citation

  • Marko Kryvobokov, 2011. "Defining apartment neighbourhoods with Thiessen polygons and fuzzy equality clustering," ERES eres2011_142, European Real Estate Society (ERES).
  • Handle: RePEc:arz:wpaper:eres2011_142
    as

    Download full text from publisher

    File URL: https://eres.architexturez.net/doc/oai-eres-id-eres2011-142
    Download Restriction: no

    File URL: https://eres.architexturez.net/system/files/pdf/eres2011_142.content.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean Dubé & Diègo Legros, 2013. "A spatio-temporal measure of spatial dependence: An example using real estate data," Papers in Regional Science, Wiley Blackwell, vol. 92(1), pages 19-30, March.
    2. Bradford Case & John Clapp & Robin Dubin & Mauricio Rodriguez, 2004. "Modeling Spatial and Temporal House Price Patterns: A Comparison of Four Models," The Journal of Real Estate Finance and Economics, Springer, vol. 29(2), pages 167-191, September.
    3. Robin Dubin, 2003. "Robustness of Spatial Autocorrelation Specifications: Some Monte Carlo Evidence," Journal of Regional Science, Wiley Blackwell, vol. 43(2), pages 221-248, May.
    4. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    5. Bourassa, Steven C. & Hamelink, Foort & Hoesli, Martin & MacGregor, Bryan D., 1999. "Defining Housing Submarkets," Journal of Housing Economics, Elsevier, vol. 8(2), pages 160-183, June.
    6. Steven Bourassa & Eva Cantoni & Martin Hoesli, 2007. "Spatial Dependence, Housing Submarkets, and House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 35(2), pages 143-160, August.
    7. Clapp, John M. & Wang, Yazhen, 2006. "Defining neighborhood boundaries: Are census tracts obsolete?," Journal of Urban Economics, Elsevier, vol. 59(2), pages 259-284, March.
    8. Alain Bonnafous & Marko Kryvobokov, 2011. "Insight into apartment attributes and location with factors and principal components," Post-Print halshs-01026520, HAL.
    9. Dubin, Robin A., 1998. "Spatial Autocorrelation: A Primer," Journal of Housing Economics, Elsevier, vol. 7(4), pages 304-327, December.
    10. Alain Bonnafous & Marko Kryvobokov, 2011. "Insight into apartment attributes and location with factors and principal components," International Journal of Housing Markets and Analysis, Emerald Group Publishing Limited, vol. 4(2), pages 155-171, May.
    11. Dubin, Robin A., 1992. "Spatial autocorrelation and neighborhood quality," Regional Science and Urban Economics, Elsevier, vol. 22(3), pages 433-452, September.
    12. Bourassa, Steven C. & Hoesli, Martin & Peng, Vincent S., 2003. "Do housing submarkets really matter?," Journal of Housing Economics, Elsevier, vol. 12(1), pages 12-28, March.
    13. Steven C. Bourassa & Eva Cantoni & Martin Hoesli, 2010. "Predicting House Prices with Spatial Dependence: A Comparison of Alternative Methods," Journal of Real Estate Research, American Real Estate Society, vol. 32(2), pages 139-160.
    14. Dale-Johnson, David, 1982. "An alternative approach to housing market segmentation using hedonic price data," Journal of Urban Economics, Elsevier, vol. 11(3), pages 311-332, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Füss, Roland & Koller, Jan A., 2016. "The role of spatial and temporal structure for residential rent predictions," International Journal of Forecasting, Elsevier, vol. 32(4), pages 1352-1368.
    2. Dieudonné Tchuente & Serge Nyawa, 2022. "Real estate price estimation in French cities using geocoding and machine learning," Annals of Operations Research, Springer, vol. 308(1), pages 571-608, January.
    3. Juergen Deppner & Marcelo Cajias, 2024. "Accounting for Spatial Autocorrelation in Algorithm-Driven Hedonic Models: A Spatial Cross-Validation Approach," The Journal of Real Estate Finance and Economics, Springer, vol. 68(2), pages 235-273, February.
    4. Xiaolong Liu, 2013. "Spatial and Temporal Dependence in House Price Prediction," The Journal of Real Estate Finance and Economics, Springer, vol. 47(2), pages 341-369, August.
    5. Alice Barreca & Elena Fregonara & Diana Rolando, 2021. "EPC Labels and Building Features: Spatial Implications over Housing Prices," Sustainability, MDPI, vol. 13(5), pages 1-21, March.
    6. Luc Anselin & Pedro Amaral, 2024. "Endogenous spatial regimes," Journal of Geographical Systems, Springer, vol. 26(2), pages 209-234, April.
    7. Katja Hanewald & Michael Sherris, 2011. "House Price Risk Models for Banking and Insurance Applications," Working Papers 201118, ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales.
    8. Chris Leishman & Greg Costello & Steven Rowley & Craig Watkins, 2013. "The Predictive Performance of Multilevel Models of Housing Sub-markets: A Comparative Analysis," Urban Studies, Urban Studies Journal Limited, vol. 50(6), pages 1201-1220, May.
    9. Stanislav Endel & Marek Teichmann & Dagmar Kutá, 2020. "Possibilities of House Valuation Automation in the Czech Republic," Sustainability, MDPI, vol. 12(18), pages 1-13, September.
    10. Natale Arcuri & Manuela De Ruggiero & Francesca Salvo & Raffaele Zinno, 2020. "Automated Valuation Methods through the Cost Approach in a BIM and GIS Integration Framework for Smart City Appraisals," Sustainability, MDPI, vol. 12(18), pages 1-16, September.
    11. Berna Keskin & Craig Watkins, 2017. "Defining spatial housing submarkets: Exploring the case for expert delineated boundaries," Urban Studies, Urban Studies Journal Limited, vol. 54(6), pages 1446-1462, May.
    12. Alice Barreca & Rocco Curto & Diana Rolando, 2018. "Housing Vulnerability and Property Prices: Spatial Analyses in the Turin Real Estate Market," Sustainability, MDPI, vol. 10(9), pages 1-20, August.
    13. Antonio Páez & Fei Long & Steven Farber, 2008. "Moving Window Approaches for Hedonic Price Estimation: An Empirical Comparison of Modelling Techniques," Urban Studies, Urban Studies Journal Limited, vol. 45(8), pages 1565-1581, July.
    14. Yong Tu & Hua Sun & Shi-Ming Yu, 2007. "Spatial Autocorrelations and Urban Housing Market Segmentation," The Journal of Real Estate Finance and Economics, Springer, vol. 34(3), pages 385-406, April.
    15. David C. Wheeler & Antonio Páez & Jamie Spinney & Lance A. Waller, 2014. "A Bayesian approach to hedonic price analysis," Papers in Regional Science, Wiley Blackwell, vol. 93(3), pages 663-683, August.
    16. Ana-María Martínez-Llorens & Paloma Taltavull de La Paz & Raul-Tomas Mora-Garcia, 2020. "Effect of The Physical Characteristics of a Dwelling on Energy Consumption and Emissions: The Case of Castellón And Valencia (Spain)," Sustainability, MDPI, vol. 12(22), pages 1-20, November.
    17. Jorge Chica-Olmo & Rafael Cano-Guervos & Mario Chica-Rivas, 2019. "Estimation of Housing Price Variations Using Spatio-Temporal Data," Sustainability, MDPI, vol. 11(6), pages 1-21, March.
    18. Rocco Curto & Elena Fregonara, 2019. "Monitoring and Analysis of the Real Estate Market in a Social Perspective: Results from the Turin’s (Italy) Experience," Sustainability, MDPI, vol. 11(11), pages 1-22, June.
    19. Ingrid Nappi‐Choulet Pr. & Tristan‐Pierre Maury, 2009. "A Spatiotemporal Autoregressive Price Index for the Paris Office Property Market," Real Estate Economics, American Real Estate and Urban Economics Association, vol. 37(2), pages 305-340, June.
    20. Maria Rosa Trovato & Claudia Clienti & Salvatore Giuffrida, 2020. "People and the City: Urban Fragility and the Real Estate-Scape in a Neighborhood of Catania, Italy," Sustainability, MDPI, vol. 12(13), pages 1-37, July.

    More about this item

    JEL classification:

    • R3 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Real Estate Markets, Spatial Production Analysis, and Firm Location

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arz:wpaper:eres2011_142. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Architexturez Imprints (email available below). General contact details of provider: https://edirc.repec.org/data/eressea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.