IDEAS home Printed from https://ideas.repec.org/p/arx/papers/math-0605421.html
   My bibliography  Save this paper

Imbalance attractors for a strategic model of market microstructure

Author

Listed:
  • Ted Theodosopoulos
  • Ming Yuen

Abstract

In this paper we extend the series of our studies on the properties of an interacting particle model for market microstructure. In our earlier work we defined a Markov process on the majority opinion of the agents, obtained the transition probabilities and analyzed the martingale properties of the ensuing wealth process. Here we relax the assumption on the choices of individual agents by allowing mixed strategies, offering opportunities for the agents to gain intermediate submartingale exposure for their individual wealth processes. We develop a novel two-dimensional spin system to model the critical regions of the wealth process as a reflection of the agents' behaviors. We exhibit strategic conflicts between individual market participants and the market as a whole, and identify a new source of uncertainty arising from `reinforced expectations'.

Suggested Citation

  • Ted Theodosopoulos & Ming Yuen, 2006. "Imbalance attractors for a strategic model of market microstructure," Papers math/0605421, arXiv.org.
  • Handle: RePEc:arx:papers:math/0605421
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/math/0605421
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Majka, Arkadiusz & Wiślicki, Wojciech, 2004. "Statistical thermodynamics for choice models on graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 337(3), pages 645-663.
    2. Renault, Jerome & Scarlatti, Sergio & Scarsini, Marco, 2005. "A folk theorem for minority games," Games and Economic Behavior, Elsevier, vol. 53(2), pages 208-230, November.
    3. Ted Theodosopoulos & Ming Yuen, 2005. "Properties of the wealth process in a market microstructure model," Papers math/0502105, arXiv.org, revised Feb 2005.
    4. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    5. Challet, Damien, 2008. "Inter-pattern speculation: Beyond minority, majority and $-games," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 85-100, January.
    6. Masanao Aoki, 2000. "Cluster Size Distribution of Economics Agents of Many Types in Market," UCLA Economics Online Papers 102, UCLA Department of Economics.
    7. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    8. Ginestra Bianconi & Andrea De Martino & Fernando F. Ferreira & Matteo Marsili, 2006. "Multi-asset minority games," Papers physics/0603152, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kei Katahira & Yu Chen, 2019. "Heterogeneous wealth distribution, round-trip trading and the emergence of volatility clustering in Speculation Game," Papers 1909.03185, arXiv.org.
    2. Kei Katahira & Yu Chen & Gaku Hashimoto & Hiroshi Okuda, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Papers 1902.02040, arXiv.org.
    3. Katahira, Kei & Chen, Yu & Hashimoto, Gaku & Okuda, Hiroshi, 2019. "Development of an agent-based speculation game for higher reproducibility of financial stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 524(C), pages 503-518.
    4. Jørgen Vitting Andersen & Ioannis Vrontos & Petros Dellaportas & Serge Galam, 2014. "Communication impacting financial markets," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) halshs-00982959, HAL.
    5. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    6. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    7. Ted Theodosopoulos, 2004. "Uncertainty relations in models of market microstructure," Papers math/0409076, arXiv.org, revised Feb 2005.
    8. Lux, Thomas & Alfarano, Simone, 2016. "Financial power laws: Empirical evidence, models, and mechanisms," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 3-18.
    9. Ryuichi Yamamoto, 2011. "Volatility clustering and herding agents: does it matter what they observe?," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 6(1), pages 41-59, May.
    10. Kristoufek, Ladislav & Vošvrda, Miloslav S., 2016. "Herding, minority game, market clearing and efficient markets in a simple spin model framework," FinMaP-Working Papers 68, Collaborative EU Project FinMaP - Financial Distortions and Macroeconomic Performance: Expectations, Constraints and Interaction of Agents.
    11. Quanbo Zha & Gang Kou & Hengjie Zhang & Haiming Liang & Xia Chen & Cong-Cong Li & Yucheng Dong, 2020. "Opinion dynamics in finance and business: a literature review and research opportunities," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 6(1), pages 1-22, December.
    12. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    13. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    14. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    15. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    16. Krause, Sebastian M. & Bornholdt, Stefan, 2013. "Spin models as microfoundation of macroscopic market models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(18), pages 4048-4054.
    17. Bornholdt, Stefan, 2022. "A q-spin Potts model of markets: Gain–loss asymmetry in stock indices as an emergent phenomenon," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 588(C).
    18. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
    19. D. Sornette, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based models," Papers 1404.0243, arXiv.org.
    20. Theodosopoulos, Ted, 2005. "Uncertainty relations in models of market microstructure," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 355(1), pages 209-216.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:math/0605421. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.