IDEAS home Printed from https://ideas.repec.org/a/wsi/acsxxx/v23y2020i06ns0219525920500174.html
   My bibliography  Save this article

Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models

Author

Listed:
  • MAXIMILIAN BEIKIRCH

    (RWTH Aachen University, Templergraben 55, 52056 Aachen, Germany)

  • SIMON CRAMER

    (#x2020;WZL, RWTH Aachen University, Campus-Boulevard 30, 52074 Aachen, Germany)

  • MARTIN FRANK

    (#x2021;Steinbuch Center for Computing, Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany)

  • PHILIPP OTTE

    (#xA7;Forschungszentrum Jülich GmbH, Jülich Supercomputing Centre, Institute for Advanced Simulation, 52425 Jülich, Germany)

  • EMMA PABICH

    (#xB6;Institute for Data Science in Mechanical Engineering, RWTH Aachen University, Dennewartstraße 27, 52068 Aachen, Germany)

  • TORSTEN TRIMBORN

    (#x2225;NRW.BANK, Kavalleriestraße 22, 40213 Düsseldorf, Germany)

Abstract

In science and especially in economics, agent-based modeling has become a widely used modeling approach. These models are often formulated as a large system of difference equations. In this study, we discuss two aspects, numerical modeling and the probabilistic description for two agent-based computational economic market models: the Levy–Levy–Solomon model and the Franke–Westerhoff model. We derive time-continuous formulations of both models, and in particular, we discuss the impact of the time-scaling on the model behavior for the Levy–Levy–Solomon model. For the Franke–Westerhoff model, we proof that a constraint required in the original model is not necessary for stability of the time-continuous model. It is shown that a semi-implicit discretization of the time-continuous system preserves this unconditional stability. In addition, this semi-implicit discretization can be computed at cost comparable to the original model. Furthermore, we discuss possible probabilistic descriptions of time-continuous agent-based computational economic market models. Especially, we present the potential advantages of kinetic theory in order to derive mesoscopic descriptions of agent-based models. Exemplified, we show two probabilistic descriptions of the Levy–Levy–Solomon and Franke–Westerhoff model.

Suggested Citation

  • Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2020. "Robust Mathematical Formulation And Probabilistic Description Of Agent-Based Computational Economic Market Models," Advances in Complex Systems (ACS), World Scientific Publishing Co. Pte. Ltd., vol. 23(06), pages 1-41, September.
  • Handle: RePEc:wsi:acsxxx:v:23:y:2020:i:06:n:s0219525920500174
    DOI: 10.1142/S0219525920500174
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219525920500174
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219525920500174?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nelson, Daniel B., 1990. "ARCH models as diffusion approximations," Journal of Econometrics, Elsevier, vol. 45(1-2), pages 7-38.
    2. C. H. Hommes, 2001. "Financial markets as nonlinear adaptive evolutionary systems," Quantitative Finance, Taylor & Francis Journals, vol. 1(1), pages 149-167.
    3. Dieci, Roberto & Foroni, Ilaria & Gardini, Laura & He, Xue-Zhong, 2006. "Market mood, adaptive beliefs and asset price dynamics," Chaos, Solitons & Fractals, Elsevier, vol. 29(3), pages 520-534.
    4. Jean-Philippe Bouchaud & Marc Mezard, 2000. "Wealth condensation in a simple model of economy," Science & Finance (CFM) working paper archive 500026, Science & Finance, Capital Fund Management.
    5. Zschischang, Elmar & Lux, Thomas, 2001. "Some new results on the Levy, Levy and Solomon microscopic stock market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 291(1), pages 563-573.
    6. Thomas Lux & Michele Marchesi, 1999. "Scaling and criticality in a stochastic multi-agent model of a financial market," Nature, Nature, vol. 397(6719), pages 498-500, February.
    7. Sornette, Didier & Zhou, Wei-Xing, 2006. "Importance of positive feedbacks and overconfidence in a self-fulfilling Ising model of financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 370(2), pages 704-726.
    8. Tesfatsion, Leigh S., 2002. "Agent-Based Computational Economics: Growing Economies from the Bottom Up," Staff General Research Papers Archive 5075, Iowa State University, Department of Economics.
    9. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2002. "Speculative behaviour and complex asset price dynamics: a global analysis," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 173-197, October.
    10. Farmer, J. Doyne & Joshi, Shareen, 2002. "The price dynamics of common trading strategies," Journal of Economic Behavior & Organization, Elsevier, vol. 49(2), pages 149-171, October.
    11. Paul De Grauwe & Marianna Grimaldi, 2014. "Heterogeneity of Agents, Transactions Costs and the Exchange Rate," World Scientific Book Chapters, in: Exchange Rates and Global Financial Policies, chapter 2, pages 33-70, World Scientific Publishing Co. Pte. Ltd..
    12. Levy, Moshe & Levy, Haim & Solomon, Sorin, 1994. "A microscopic model of the stock market : Cycles, booms, and crashes," Economics Letters, Elsevier, vol. 45(1), pages 103-111, May.
    13. Kaizoji, Taisei & Bornholdt, Stefan & Fujiwara, Yoshi, 2002. "Dynamics of price and trading volume in a spin model of stock markets with heterogeneous agents," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 441-452.
    14. Beja, Avraham & Goldman, M Barry, 1980. "On the Dynamic Behavior of Prices in Disequilibrium," Journal of Finance, American Finance Association, vol. 35(2), pages 235-248, May.
    15. R. Cross & M. Grinfeld & H. Lamba & T. Seaman, 2007. "Stylized facts from a threshold-based heterogeneous agent model," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 57(2), pages 213-218, May.
    16. Sonnenschein, Hugo, 1972. "Market Excess Demand Functions," Econometrica, Econometric Society, vol. 40(3), pages 549-563, May.
    17. Alfarano, Simone & Lux, Thomas & Wagner, Friedrich, 2008. "Time variation of higher moments in a financial market with heterogeneous agents: An analytical approach," Journal of Economic Dynamics and Control, Elsevier, vol. 32(1), pages 101-136, January.
    18. W.-X. Zhou & D. Sornette, 2007. "Self-organizing Ising model of financial markets," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 55(2), pages 175-181, January.
    19. Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
    20. Carl Chiarella & Roberto Dieci & Laura Gardini, 2005. "The Dynamic Interaction of Speculation and Diversification," Applied Mathematical Finance, Taylor & Francis Journals, vol. 12(1), pages 17-52.
    21. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Minority games and stylized facts," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 299(1), pages 228-233.
    22. Chiarella, Carl & Dieci, Roberto & He, Xue-Zhong, 2007. "Heterogeneous expectations and speculative behavior in a dynamic multi-asset framework," Journal of Economic Behavior & Organization, Elsevier, vol. 62(3), pages 408-427, March.
    23. Turnovsky, Stephen J, 1977. "On the Formulation of Continuous Time Macroeconomic Models with Asset Accumulation," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 18(1), pages 1-28, February.
    24. Day, Richard H. & Huang, Weihong, 1990. "Bulls, bears and market sheep," Journal of Economic Behavior & Organization, Elsevier, vol. 14(3), pages 299-329, December.
    25. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    26. Mantel, Rolf R., 1974. "On the characterization of aggregate excess demand," Journal of Economic Theory, Elsevier, vol. 7(3), pages 348-353, March.
    27. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    28. Chiarella, Carl & Dieci, Roberto & Gardini, Laura, 2006. "Asset price and wealth dynamics in a financial market with heterogeneous agents," Journal of Economic Dynamics and Control, Elsevier, vol. 30(9-10), pages 1755-1786.
    29. Thomas Lux & Michele Marchesi, 2000. "Volatility Clustering In Financial Markets: A Microsimulation Of Interacting Agents," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 3(04), pages 675-702.
    30. Harras, Georges & Sornette, Didier, 2011. "How to grow a bubble: A model of myopic adapting agents," Journal of Economic Behavior & Organization, Elsevier, vol. 80(1), pages 137-152.
    31. Cont, Rama & Bouchaud, Jean-Philipe, 2000. "Herd Behavior And Aggregate Fluctuations In Financial Markets," Macroeconomic Dynamics, Cambridge University Press, vol. 4(2), pages 170-196, June.
    32. J. Doyne Farmer & Duncan Foley, 2009. "The economy needs agent-based modelling," Nature, Nature, vol. 460(7256), pages 685-686, August.
    33. Challet, Damien & Marsili, Matteo & Zhang, Yi-Cheng, 2001. "Stylized facts of financial markets and market crashes in Minority Games," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 294(3), pages 514-524.
    34. Bouchaud, Jean-Philippe & Mézard, Marc, 2000. "Wealth condensation in a simple model of economy," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 282(3), pages 536-545.
    35. Pareschi, Lorenzo & Toscani, Giuseppe, 2013. "Interacting Multiagent Systems: Kinetic equations and Monte Carlo methods," OUP Catalogue, Oxford University Press, number 9780199655465.
    36. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    37. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    38. Cross, Rod & Grinfeld, Michael & Lamba, Harbir & Seaman, Tim, 2005. "A threshold model of investor psychology," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 354(C), pages 463-478.
    39. Jean-Philippe Bouchaud & Rama Cont, 1998. "A Langevin approach to stock market fluctuations and crashes," Science & Finance (CFM) working paper archive 500027, Science & Finance, Capital Fund Management.
    40. Franke, Reiner & Westerhoff, Frank, 2012. "Structural stochastic volatility in asset pricing dynamics: Estimation and model contest," Journal of Economic Dynamics and Control, Elsevier, vol. 36(8), pages 1193-1211.
    41. Maldarella, Dario & Pareschi, Lorenzo, 2012. "Kinetic models for socio-economic dynamics of speculative markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(3), pages 715-730.
    42. Trimborn, Torsten & Frank, Martin & Martin, Stephan, 2018. "Mean field limit of a behavioral financial market model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 613-631.
    43. Christian Lax & Torsten Trimborn, 2019. "From Disequilibrium Markets to Equilibrium," Papers 1912.09679, arXiv.org.
    44. Lux, Thomas, 1995. "Herd Behaviour, Bubbles and Crashes," Economic Journal, Royal Economic Society, vol. 105(431), pages 881-896, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2019. "Robust Mathematical Formulation and Probabilistic Description of Agent-Based Computational Economic Market Models," Papers 1904.04951, arXiv.org, revised Mar 2021.
    2. Torsten Trimborn & Philipp Otte & Simon Cramer & Maximilian Beikirch & Emma Pabich & Martin Frank, 2020. "SABCEMM: A Simulator for Agent-Based Computational Economic Market Models," Computational Economics, Springer;Society for Computational Economics, vol. 55(2), pages 707-744, February.
    3. Simon Cramer & Torsten Trimborn, 2019. "Stylized Facts and Agent-Based Modeling," Papers 1912.02684, arXiv.org.
    4. Torsten Trimborn & Philipp Otte & Simon Cramer & Max Beikirch & Emma Pabich & Martin Frank, 2018. "SABCEMM-A Simulator for Agent-Based Computational Economic Market Models," Papers 1801.01811, arXiv.org, revised Oct 2018.
    5. Maximilian Beikirch & Simon Cramer & Martin Frank & Philipp Otte & Emma Pabich & Torsten Trimborn, 2018. "Simulation of Stylized Facts in Agent-Based Computational Economic Market Models," Papers 1812.02726, arXiv.org, revised Nov 2019.
    6. Troy Tassier, 2013. "Handbook of Research on Complexity, by J. Barkley Rosser, Jr. and Edward Elgar," Eastern Economic Journal, Palgrave Macmillan;Eastern Economic Association, vol. 39(1), pages 132-133.
    7. Antonio Doria, Francisco, 2011. "J.B. Rosser Jr. , Handbook of Research on Complexity, Edward Elgar, Cheltenham, UK--Northampton, MA, USA (2009) 436 + viii pp., index, ISBN 978 1 84542 089 5 (cased)," Journal of Economic Behavior & Organization, Elsevier, vol. 78(1-2), pages 196-204, April.
    8. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2001. "Microscopic Models of Financial Markets," Papers cond-mat/0110354, arXiv.org.
    9. Torsten Trimborn & Lorenzo Pareschi & Martin Frank, 2017. "Portfolio Optimization and Model Predictive Control: A Kinetic Approach," Papers 1711.03291, arXiv.org, revised Feb 2019.
    10. Hommes, Cars H., 2006. "Heterogeneous Agent Models in Economics and Finance," Handbook of Computational Economics, in: Leigh Tesfatsion & Kenneth L. Judd (ed.), Handbook of Computational Economics, edition 1, volume 2, chapter 23, pages 1109-1186, Elsevier.
    11. E. Samanidou & E. Zschischang & D. Stauffer & T. Lux, 2007. "Agent-based Models of Financial Markets," Papers physics/0701140, arXiv.org.
    12. Detlef Seese & Christof Weinhardt & Frank Schlottmann (ed.), 2008. "Handbook on Information Technology in Finance," International Handbooks on Information Systems, Springer, number 978-3-540-49487-4, November.
    13. Carl Chiarella & Roberto Dieci & Xue-Zhong He, 2008. "Heterogeneity, Market Mechanisms, and Asset Price Dynamics," Research Paper Series 231, Quantitative Finance Research Centre, University of Technology, Sydney.
    14. Cars Hommes & Florian Wagener, 2008. "Complex Evolutionary Systems in Behavioral Finance," Tinbergen Institute Discussion Papers 08-054/1, Tinbergen Institute.
    15. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2014, January-A.
    16. Kai Li, 2014. "Asset Price Dynamics with Heterogeneous Beliefs and Time Delays," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 13, July-Dece.
    17. Didier SORNETTE, 2014. "Physics and Financial Economics (1776-2014): Puzzles, Ising and Agent-Based Models," Swiss Finance Institute Research Paper Series 14-25, Swiss Finance Institute.
    18. Xue-Zhong He & Youwei Li, 2017. "The adaptiveness in stock markets: testing the stylized facts in the DAX 30," Journal of Evolutionary Economics, Springer, vol. 27(5), pages 1071-1094, November.
    19. He, Xue-Zhong & Li, Youwei, 2007. "Power-law behaviour, heterogeneity, and trend chasing," Journal of Economic Dynamics and Control, Elsevier, vol. 31(10), pages 3396-3426, October.
    20. Hommes, C.H., 2005. "Heterogeneous Agent Models in Economics and Finance, In: Handbook of Computational Economics II: Agent-Based Computational Economics, edited by Leigh Tesfatsion and Ken Judd , Elsevier, Amsterdam 2006," CeNDEF Working Papers 05-03, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:acsxxx:v:23:y:2020:i:06:n:s0219525920500174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/acs/acs.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.