Author
Abstract
We clarify the status of log-periodicity associated with speculative bubbles preceding financial crashes. In particular, we address Feigenbaum's criticism ([A article="1469-7688/1/3/306"] Feigenbaum J A 2001 Quantitative Finance1 346-60 [/A]) and show how it can be refuted. Feigenbaum's main result is as follows: 'the hypothesis that the log-periodic component is present in the data cannot be rejected at the 95% confidence level when using all the data prior to the 1987 crash; however, it can be rejected by removing the last year of data' (e.g. by removing 15% of the data closest to the critical point). We stress that it is naive to analyse a critical point phenomenon, i.e., a power-law divergence, reliably by removing the most important part of the data closest to the critical point. We also present the history of log-periodicity in the present context explaining its essential features and why it may be important. We offer an extension of the rational expectation bubble model for general and arbitrary risk-aversion within the general stochastic discount factor theory. We suggest guidelines for the use of log-periodicity and explain how to develop and interpret statistical tests of log-periodicity. We discuss the issue of prediction based on our results and the evidence of outliers in the distribution of drawdowns. New statistical tests demonstrate that the 1% to 10% quantile of the largest events of the population of drawdowns of the NASDAQ composite index and of the Dow Jones Industrial Average index belong to a distribution significantly different from the rest of the population. This suggests that very large drawdowns may result from an amplification mechanism that may make them more predictable.
Suggested Citation
D. Sornette & A. Johansen, 2001.
"Significance of log-periodic precursors to financial crashes,"
Quantitative Finance, Taylor & Francis Journals, vol. 1(4), pages 452-471.
Handle:
RePEc:taf:quantf:v:1:y:2001:i:4:p:452-471
DOI: 10.1088/1469-7688/1/4/305
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:1:y:2001:i:4:p:452-471. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.