IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.07924.html
   My bibliography  Save this paper

NDAI Agreements

Author

Listed:
  • Matthew Stephenson
  • Andrew Miller
  • Xyn Sun
  • Bhargav Annem
  • Rohan Parikh

Abstract

We study a fundamental challenge in the economics of innovation: an inventor must reveal details of a new idea to secure compensation or funding, yet such disclosure risks expropriation. We present a model in which a seller (inventor) and buyer (investor) bargain over an information good under the threat of hold-up. In the classical setting, the seller withholds disclosure to avoid misappropriation, leading to inefficiency. We show that trusted execution environments (TEEs) combined with AI agents can mitigate and even fully eliminate this hold-up problem. By delegating the disclosure and payment decisions to tamper-proof programs, the seller can safely reveal the invention without risking expropriation, achieving full disclosure and an efficient ex post transfer. Moreover, even if the invention's value exceeds a threshold that TEEs can fully secure, partial disclosure still improves outcomes compared to no disclosure. Recognizing that real AI agents are imperfect, we model "agent errors" in payments or disclosures and demonstrate that budget caps and acceptance thresholds suffice to preserve most of the efficiency gains. Our results imply that cryptographic or hardware-based solutions can function as an "ironclad NDA," substantially mitigating the fundamental disclosure-appropriation paradox first identified by Arrow (1962) and Nelson (1959). This has far-reaching policy implications for fostering R&D, technology transfer, and collaboration.

Suggested Citation

  • Matthew Stephenson & Andrew Miller & Xyn Sun & Bhargav Annem & Rohan Parikh, 2025. "NDAI Agreements," Papers 2502.07924, arXiv.org.
  • Handle: RePEc:arx:papers:2502.07924
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.07924
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.07924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.