IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v321y2025i1p257-268.html
   My bibliography  Save this article

Industry return prediction via interpretable deep learning

Author

Listed:
  • Zografopoulos, Lazaros
  • Iannino, Maria Chiara
  • Psaradellis, Ioannis
  • Sermpinis, Georgios

Abstract

We apply an interpretable machine learning model, the LassoNet, to forecast and trade U.S. industry portfolio returns. The model combines a regularization mechanism with a neural network architecture. A cooperative game-theoretic algorithm is also applied to interpret our findings. The latter hierarchizes the covariates based on their contribution to the overall model performance. Our findings reveal that the LassoNet outperforms various linear and nonlinear benchmarks concerning out-of-sample forecasting accuracy and provides economically meaningful and profitable predictions. Valuation ratios are the most crucial covariates, followed by individual and cross-industry lagged returns. The constructed industry ETF portfolios attain positive Sharpe ratios and positive and statistically significant alphas, surviving even transaction costs.

Suggested Citation

  • Zografopoulos, Lazaros & Iannino, Maria Chiara & Psaradellis, Ioannis & Sermpinis, Georgios, 2025. "Industry return prediction via interpretable deep learning," European Journal of Operational Research, Elsevier, vol. 321(1), pages 257-268.
  • Handle: RePEc:eee:ejores:v:321:y:2025:i:1:p:257-268
    DOI: 10.1016/j.ejor.2024.08.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221724006878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2024.08.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:321:y:2025:i:1:p:257-268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.