IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2502.00751.html
   My bibliography  Save this paper

Online Generalized Method of Moments for Time Series

Author

Listed:
  • Man Fung Leung
  • Kin Wai Chan
  • Xiaofeng Shao

Abstract

Online learning has gained popularity in recent years due to the urgent need to analyse large-scale streaming data, which can be collected in perpetuity and serially dependent. This motivates us to develop the online generalized method of moments (OGMM), an explicitly updated estimation and inference framework in the time series setting. The OGMM inherits many properties of offline GMM, such as its broad applicability to many problems in econometrics and statistics, natural accommodation for over-identification, and achievement of semiparametric efficiency under temporal dependence. As an online method, the key gain relative to offline GMM is the vast improvement in time complexity and memory requirement. Building on the OGMM framework, we propose improved versions of online Sargan--Hansen and structural stability tests following recent work in econometrics and statistics. Through Monte Carlo simulations, we observe encouraging finite-sample performance in online instrumental variables regression, online over-identifying restrictions test, online quantile regression, and online anomaly detection. Interesting applications of OGMM to stochastic volatility modelling and inertial sensor calibration are presented to demonstrate the effectiveness of OGMM.

Suggested Citation

  • Man Fung Leung & Kin Wai Chan & Xiaofeng Shao, 2025. "Online Generalized Method of Moments for Time Series," Papers 2502.00751, arXiv.org.
  • Handle: RePEc:arx:papers:2502.00751
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2502.00751
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2502.00751. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.