On The Heston Model With Stochastic Correlation
Author
Abstract
Suggested Citation
DOI: 10.1142/S0219024916500333
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005.
"A Theory Of The Term Structure Of Interest Rates,"
World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164,
World Scientific Publishing Co. Pte. Ltd..
- Cox, John C & Ingersoll, Jonathan E, Jr & Ross, Stephen A, 1985. "A Theory of the Term Structure of Interest Rates," Econometrica, Econometric Society, vol. 53(2), pages 385-407, March.
- Da Fonseca José & Grasselli Martino & Ielpo Florian, 2014. "Estimating the Wishart Affine Stochastic Correlation Model using the empirical characteristic function," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 18(3), pages 253-289, May.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009.
"The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work So Well,"
Management Science, INFORMS, vol. 55(12), pages 1914-1932, December.
- Peter Christoffersen & Steven Heston & Kris Jacobs, 2009. "The Shape and Term Structure of the Index Option Smirk: Why Multifactor Stochastic Volatility Models Work so Well," CREATES Research Papers 2009-34, Department of Economics and Business Economics, Aarhus University.
- Andrea Buraschi & Paolo Porchia & Fabio Trojani, 2010. "Correlation Risk and Optimal Portfolio Choice," Journal of Finance, American Finance Association, vol. 65(1), pages 393-420, February.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 2000.
"Transform Analysis and Asset Pricing for Affine Jump-Diffusions,"
Econometrica, Econometric Society, vol. 68(6), pages 1343-1376, November.
- Darrell Duffie & Jun Pan & Kenneth Singleton, 1999. "Transform Analysis and Asset Pricing for Affine Jump-Diffusions," NBER Working Papers 7105, National Bureau of Economic Research, Inc.
- Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
- Grzelak, Lech & Oosterlee, Kees, 2009. "On The Heston Model with Stochastic Interest Rates," MPRA Paper 20620, University Library of Munich, Germany, revised 18 Jan 2010.
- Rainer Schöbel & Jianwei Zhu, 1999. "Stochastic Volatility With an Ornstein–Uhlenbeck Process: An Extension," Review of Finance, European Finance Association, vol. 3(1), pages 23-46.
- Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
- Jun Ma, 2009. "Pricing Foreign Equity Options with Stochastic Correlation and Volatility," Annals of Economics and Finance, Society for AEF, vol. 10(2), pages 303-327, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Xiao Xu, 2020. "The optimal investment strategy of a DC pension plan under deposit loan spread and the O-U process," Papers 2005.10661, arXiv.org.
- Bianca Reichert & Adriano Mendon a Souza, 2022. "Can the Heston Model Forecast Energy Generation? A Systematic Literature Review," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 289-295.
- Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
- Tianyao Chen & Xue Cheng & Jingping Yang, 2019. "Common Decomposition of Correlated Brownian Motions and its Financial Applications," Papers 1907.03295, arXiv.org, revised Nov 2020.
- Ah-Reum Han & Jeong-Hoon Kim & See-Woo Kim, 2021. "Variance Swaps with Deterministic and Stochastic Correlations," Computational Economics, Springer;Society for Computational Economics, vol. 57(4), pages 1059-1092, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
- Benjamin Cheng & Christina Nikitopoulos-Sklibosios & Erik Schlogl, 2015. "Pricing of Long-dated Commodity Derivatives with Stochastic Volatility and Stochastic Interest Rates," Research Paper Series 366, Quantitative Finance Research Centre, University of Technology, Sydney.
- Roman Horsky & Tilman Sayer, 2015. "Joining The Heston And A Three-Factor Short Rate Model: A Closed-Form Approach," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(08), pages 1-17, December.
- Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2017.
"Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model,"
Quantitative Finance, Taylor & Francis Journals, vol. 17(8), pages 1257-1275, August.
- Maria Cristina Recchioni & Yu Sun & Gabriele Tedeschi, 2016. "Can negative interest rates really affect option pricing? Empirical evidence from an explicitly solvable stochastic volatility model," Working Papers 2016/23, Economics Department, Universitat Jaume I, Castellón (Spain).
- Alexander Lipton, 2024. "Hydrodynamics of Markets:Hidden Links Between Physics and Finance," Papers 2403.09761, arXiv.org.
- Ying Chang & Yiming Wang & Sumei Zhang, 2021. "Option Pricing under Double Heston Jump-Diffusion Model with Approximative Fractional Stochastic Volatility," Mathematics, MDPI, vol. 9(2), pages 1-10, January.
- Cheng, Benjamin & Nikitopoulos, Christina Sklibosios & Schlögl, Erik, 2018. "Pricing of long-dated commodity derivatives: Do stochastic interest rates matter?," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 148-166.
- Long Teng, 2021. "The Heston Model with Time-Dependent Correlation Driven by Isospectral Flows," Mathematics, MDPI, vol. 9(9), pages 1-8, April.
- Aït-Sahalia, Yacine & Amengual, Dante & Manresa, Elena, 2015. "Market-based estimation of stochastic volatility models," Journal of Econometrics, Elsevier, vol. 187(2), pages 418-435.
- Mrázek, Milan & Pospíšil, Jan & Sobotka, Tomáš, 2016. "On calibration of stochastic and fractional stochastic volatility models," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1036-1046.
- Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
- Marcos Escobar & Christoph Gschnaidtner, 2018. "A multivariate stochastic volatility model with applications in the foreign exchange market," Review of Derivatives Research, Springer, vol. 21(1), pages 1-43, April.
- Zhu, Song-Ping & Lian, Guang-Hua, 2015. "Pricing forward-start variance swaps with stochastic volatility," Applied Mathematics and Computation, Elsevier, vol. 250(C), pages 920-933.
- Giulia Di Nunno & Kk{e}stutis Kubilius & Yuliya Mishura & Anton Yurchenko-Tytarenko, 2023. "From constant to rough: A survey of continuous volatility modeling," Papers 2309.01033, arXiv.org, revised Sep 2023.
- Bin Xie & Weiping Li & Nan Liang, 2021. "Pricing S&P 500 Index Options with L\'evy Jumps," Papers 2111.10033, arXiv.org, revised Nov 2021.
- Bertrand Tavin & Lorenz Schneider, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect : An analysis of crude oil calendar spread options," Post-Print hal-02311970, HAL.
- Long Teng & Matthias Ehrhardt & Michael Günther, 2018. "Quanto Pricing In Stochastic Correlation Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(05), pages 1-20, August.
- Grzelak, Lech & Oosterlee, Kees, 2010. "An Equity-Interest Rate Hybrid Model With Stochastic Volatility and the Interest Rate Smile," MPRA Paper 20574, University Library of Munich, Germany.
- Li, Chenxu & Wu, Linjia, 2019. "Exact simulation of the Ornstein–Uhlenbeck driven stochastic volatility model," European Journal of Operational Research, Elsevier, vol. 275(2), pages 768-779.
- Schneider, Lorenz & Tavin, Bertrand, 2018. "From the Samuelson volatility effect to a Samuelson correlation effect: An analysis of crude oil calendar spread options," Journal of Banking & Finance, Elsevier, vol. 95(C), pages 185-202.
More about this item
Keywords
Heston model; stochastic correlation process; Ornstein–Uhlenbeck process; Jacobi process; characteristic function; affine diffusion process;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:19:y:2016:i:06:n:s0219024916500333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.