IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v35y2025i1p161-213.html
   My bibliography  Save this article

Joint calibration to SPX and VIX options with signature‐based models

Author

Listed:
  • Christa Cuchiero
  • Guido Gazzani
  • Janka Möller
  • Sara Svaluto‐Ferro

Abstract

We consider a stochastic volatility model where the dynamics of the volatility are described by a linear function of the (time extended) signature of a primary process which is supposed to be a polynomial diffusion. We obtain closed form expressions for the VIX squared, exploiting the fact that the truncated signature of a polynomial diffusion is again a polynomial diffusion. Adding to such a primary process the Brownian motion driving the stock price, allows then to express both the log‐price and the VIX squared as linear functions of the signature of the corresponding augmented process. This feature can then be efficiently used for pricing and calibration purposes. Indeed, as the signature samples can be easily precomputed, the calibration task can be split into an offline sampling and a standard optimization. We also propose a Fourier pricing approach for both VIX and SPX options exploiting that the signature of the augmented primary process is an infinite dimensional affine process. For both the SPX and VIX options we obtain highly accurate calibration results, showing that this model class allows to solve the joint calibration problem without adding jumps or rough volatility.

Suggested Citation

  • Christa Cuchiero & Guido Gazzani & Janka Möller & Sara Svaluto‐Ferro, 2025. "Joint calibration to SPX and VIX options with signature‐based models," Mathematical Finance, Wiley Blackwell, vol. 35(1), pages 161-213, January.
  • Handle: RePEc:bla:mathfi:v:35:y:2025:i:1:p:161-213
    DOI: 10.1111/mafi.12442
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/mafi.12442
    Download Restriction: no

    File URL: https://libkey.io/10.1111/mafi.12442?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:35:y:2025:i:1:p:161-213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.