IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2501.02381.html
   My bibliography  Save this paper

Estimating Discrete Choice Demand Models with Sparse Market-Product Shocks

Author

Listed:
  • Zhentong Lu
  • Kenichi Shimizu

Abstract

We propose a new approach to estimating the random coefficient logit demand model for differentiated products when the vector of market-product level shocks is sparse. Assuming sparsity, we establish nonparametric identification of the distribution of random coefficients and demand shocks under mild conditions. Then we develop a Bayesian procedure, which exploits the sparsity structure using shrinkage priors, to conduct inference about the model parameters and counterfactual quantities. Comparing to the standard BLP (Berry, Levinsohn, & Pakes, 1995) method, our approach does not require demand inversion or instrumental variables (IVs), thus provides a compelling alternative when IVs are not available or their validity is questionable. Monte Carlo simulations validate our theoretical findings and demonstrate the effectiveness of our approach, while empirical applications reveal evidence of sparse demand shocks in well-known datasets.

Suggested Citation

  • Zhentong Lu & Kenichi Shimizu, 2025. "Estimating Discrete Choice Demand Models with Sparse Market-Product Shocks," Papers 2501.02381, arXiv.org.
  • Handle: RePEc:arx:papers:2501.02381
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2501.02381
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Domenico Giannone & Michele Lenza & Giorgio E. Primiceri, 2021. "Economic Predictions With Big Data: The Illusion of Sparsity," Econometrica, Econometric Society, vol. 89(5), pages 2409-2437, September.
    2. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    3. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    4. Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
    5. Rubén Loaiza-Maya & Didier Nibbering, 2022. "Scalable Bayesian Estimation in the Multinomial Probit Model," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 40(4), pages 1678-1690, October.
    6. Veronika Ročková & Edward I. George, 2018. "The Spike-and-Slab LASSO," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 431-444, January.
    7. Siddhartha Chib & Kenichi Shimizu, 2023. "Scalable Estimation of Multinomial Response Models with Random Consideration Sets," Papers 2308.12470, arXiv.org, revised Aug 2024.
    8. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    9. Fox, Jeremy T. & Kim, Kyoo il & Ryan, Stephen P. & Bajari, Patrick, 2012. "The random coefficients logit model is identified," Journal of Econometrics, Elsevier, vol. 166(2), pages 204-212.
    10. Jiang, Renna & Manchanda, Puneet & Rossi, Peter E., 2009. "Bayesian analysis of random coefficient logit models using aggregate data," Journal of Econometrics, Elsevier, vol. 149(2), pages 136-148, April.
    11. Cardell, N. Scott, 1997. "Variance Components Structures for the Extreme-Value and Logistic Distributions with Application to Models of Heterogeneity," Econometric Theory, Cambridge University Press, vol. 13(2), pages 185-213, April.
    12. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    13. Pinelopi Koujianou Goldberg & Frank Verboven, 2001. "The Evolution of Price Dispersion in the European Car Market," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 68(4), pages 811-848.
    14. Dimitris Korobilis & Kenichi Shimizu, 2022. "Bayesian Approaches to Shrinkage and Sparse Estimation," Foundations and Trends(R) in Econometrics, now publishers, vol. 11(4), pages 230-354, June.
    15. Gary Koop & Dimitris Korobilis, 2023. "Bayesian Dynamic Variable Selection In High Dimensions," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 64(3), pages 1047-1074, August.
    16. Jerry A. Hausman, 1996. "Valuation of New Goods under Perfect and Imperfect Competition," NBER Chapters, in: The Economics of New Goods, pages 207-248, National Bureau of Economic Research, Inc.
    17. Timothy B. Armstrong, 2016. "Large Market Asymptotics for Differentiated Product Demand Estimators With Economic Models of Supply," Econometrica, Econometric Society, vol. 84, pages 1961-1980, September.
    18. James Levinsohn & Steven Berry & Ariel Pakes, 1999. "Voluntary Export Restraints on Automobiles: Evaluating a Trade Policy," American Economic Review, American Economic Association, vol. 89(3), pages 400-430, June.
    19. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    20. Benjamin J Gillen & Sergio Montero & Hyungsik Roger Moon & Matthew Shum, 2019. "BLP-2LASSO for aggregate discrete choice models with rich covariates," The Econometrics Journal, Royal Economic Society, vol. 22(3), pages 262-281.
    21. Ali Hortacsu & Olivia R. Natan & Hayden Parsley & Timothy Schwieg & Kevin R. Williams, 2021. "Demand Estimation with Infrequent Purchases and Small Market Sizes," Cowles Foundation Discussion Papers 2313R2, Cowles Foundation for Research in Economics, Yale University, revised Jun 2023.
    22. Jeremy T. Fox & Amit Gandhi, 2016. "Nonparametric identification and estimation of random coefficients in multinomial choice models," RAND Journal of Economics, RAND Corporation, vol. 47(1), pages 118-139, February.
    23. Khan, Shakeeb & Tamer, Elie, 2009. "Inference on endogenously censored regression models using conditional moment inequalities," Journal of Econometrics, Elsevier, vol. 152(2), pages 104-119, October.
    24. Andrew Sweeting, 2013. "Dynamic Product Positioning in Differentiated Product Markets: The Effect of Fees for Musical Performance Rights on the Commercial Radio Industry," Econometrica, Econometric Society, vol. 81(5), pages 1763-1803, September.
    25. Bart J. Bronnenberg & Michael W. Kruger & Carl F. Mela, 2008. "—The IRI Marketing Data Set," Marketing Science, INFORMS, vol. 27(4), pages 745-748, 07-08.
    26. Amit Gandhi & Zhentong Lu & Xiaoxia Shi, 2023. "Estimating demand for differentiated products with zeroes in market share data," Quantitative Economics, Econometric Society, vol. 14(2), pages 381-418, May.
    27. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    28. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    29. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2023. "Nonparametric identification of random coefficients in aggregate demand models for differentiated products," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 279-306.
    30. Adam N. Smith & Jim E. Griffin, 2023. "Shrinkage priors for high-dimensional demand estimation," Quantitative Marketing and Economics (QME), Springer, vol. 21(1), pages 95-146, March.
    31. Khai Xiang Chiong & Matthew Shum, 2019. "Random Projection Estimation of Discrete-Choice Models with Large Choice Sets," Management Science, INFORMS, vol. 65(1), pages 256-271, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
    2. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    3. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    4. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    5. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    6. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    7. Mogens Fosgerau & Julien Monardo & André de Palma, 2024. "The Inverse Product Differentiation Logit Model," American Economic Journal: Microeconomics, American Economic Association, vol. 16(4), pages 329-370, November.
    8. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2023. "Nonparametric identification of random coefficients in aggregate demand models for differentiated products," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 279-306.
    9. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    10. Wang, Ao, 2021. "A BLP Demand Model of Product-Level Market Shares with Complementarity," The Warwick Economics Research Paper Series (TWERPS) 1351, University of Warwick, Department of Economics.
    11. Amit Gandhi & Jean-François Houde, 2019. "Measuring Substitution Patterns in Differentiated-Products Industries," NBER Working Papers 26375, National Bureau of Economic Research, Inc.
    12. Ketz, Philipp, 2019. "On asymptotic size distortions in the random coefficients logit model," Journal of Econometrics, Elsevier, vol. 212(2), pages 413-432.
    13. Mayer, Thierry & Head, Keith, 2021. "Poor Substitutes? Counterfactual methods in IO and Trade compared," CEPR Discussion Papers 16762, C.E.P.R. Discussion Papers.
    14. Byrne, David P. & Imai, Susumu & Jain, Neelam & Sarafidis, Vasilis, 2022. "Instrument-free identification and estimation of differentiated products models using cost data," Journal of Econometrics, Elsevier, vol. 228(2), pages 278-301.
    15. Bokhari, Farasat A.S. & Mariuzzo, Franco, 2018. "Demand estimation and merger simulations for drugs: Logits v. AIDS," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 653-685.
    16. Iaria, Alessandro & ,, 2020. "Identification and Estimation of Demand for Bundles," CEPR Discussion Papers 14363, C.E.P.R. Discussion Papers.
    17. Leheyda, Nina, 2008. "Market Power, Multimarket Contact and Pricing: Some Evidence from the US Automobile Market," ZEW Discussion Papers 08-118, ZEW - Leibniz Centre for European Economic Research.
    18. Sun, Yutec & Ishihara, Masakazu, 2019. "A computationally efficient fixed point approach to dynamic structural demand estimation," Journal of Econometrics, Elsevier, vol. 208(2), pages 563-584.
    19. Nail Kashaev, 2018. "Identification and estimation of multinomial choice models with latent special covariates," Papers 1811.05555, arXiv.org, revised Mar 2022.
    20. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.

    More about this item

    JEL classification:

    • C10 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - General
    • C30 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - General
    • D10 - Microeconomics - - Household Behavior - - - General
    • L00 - Industrial Organization - - General - - - General

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2501.02381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.