IDEAS home Printed from https://ideas.repec.org/a/eee/econom/v235y2023i2p2245-2265.html
   My bibliography  Save this article

Semi-nonparametric estimation of random coefficients logit model for aggregate demand

Author

Listed:
  • Lu, Zhentong
  • Shi, Xiaoxia
  • Tao, Jing

Abstract

In this paper, we propose a two-step semi-nonparametric estimator for the widely used random coefficients logit demand model. The approach applies to the same setup as Berry et al. (1995, BLP)-type of models with many products, but has the advantage of not requiring computing demand inversion. In particular, the first step of our approach estimates the fixed coefficients via a computationally very easy linear sieve generalized method of moments (GMM). The second step uncovers the distribution of the random coefficient via a sieve minimum distance or GMM procedure. We show identification and derive the asymptotic properties of the estimator in a large market environment. Monte Carlo simulations and empirical illustrations support the theoretical results and demonstrate the usefulness of our estimator in practice.

Suggested Citation

  • Lu, Zhentong & Shi, Xiaoxia & Tao, Jing, 2023. "Semi-nonparametric estimation of random coefficients logit model for aggregate demand," Journal of Econometrics, Elsevier, vol. 235(2), pages 2245-2265.
  • Handle: RePEc:eee:econom:v:235:y:2023:i:2:p:2245-2265
    DOI: 10.1016/j.jeconom.2022.10.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304407623001458
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.jeconom.2022.10.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xiaohong Chen & Demian Pouzo, 2015. "Sieve Wald and QLR Inferences on Semi/Nonparametric Conditional Moment Models," Econometrica, Econometric Society, vol. 83(3), pages 1013-1079, May.
    2. Jean‐Pierre Dubé & Jeremy T. Fox & Che‐Lin Su, 2012. "Improving the Numerical Performance of Static and Dynamic Aggregate Discrete Choice Random Coefficients Demand Estimation," Econometrica, Econometric Society, vol. 80(5), pages 2231-2267, September.
    3. Daniel A. Ackerberg & Marc Rysman, 2005. "Unobserved Product Differentiation in Discrete-Choice Models: Estimating Price Elasticities and Welfare Effects," RAND Journal of Economics, The RAND Corporation, vol. 36(4), pages 771-788, Winter.
    4. Reynaert, Mathias & Verboven, Frank, 2014. "Improving the performance of random coefficients demand models: The role of optimal instruments," Journal of Econometrics, Elsevier, vol. 179(1), pages 83-98.
    5. Steven Berry & Amit Gandhi & Philip Haile, 2013. "Connected Substitutes and Invertibility of Demand," Econometrica, Econometric Society, vol. 81(5), pages 2087-2111, September.
    6. Fox, Jeremy T. & Kim, Kyoo il & Yang, Chenyu, 2016. "A simple nonparametric approach to estimating the distribution of random coefficients in structural models," Journal of Econometrics, Elsevier, vol. 195(2), pages 236-254.
    7. Patrick Bayer & Fernando Ferreira & Robert McMillan, 2007. "A Unified Framework for Measuring Preferences for Schools and Neighborhoods," Journal of Political Economy, University of Chicago Press, vol. 115(4), pages 588-638, August.
    8. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    9. Steven T. Berry & Philip A. Haile, 2014. "Identification in Differentiated Products Markets Using Market Level Data," Econometrica, Econometric Society, vol. 82, pages 1749-1797, September.
    10. Steve Berry & Oliver B. Linton & Ariel Pakes, 2004. "Limit Theorems for Estimating the Parameters of Differentiated Product Demand Systems," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 71(3), pages 613-654.
    11. Jeremy T. Fox & Kyoo il Kim & Stephen P. Ryan & Patrick Bajari, 2011. "A simple estimator for the distribution of random coefficients," Quantitative Economics, Econometric Society, vol. 2(3), pages 381-418, November.
    12. Fosgerau, Mogens & Bierlaire, Michel, 2007. "A practical test for the choice of mixing distribution in discrete choice models," Transportation Research Part B: Methodological, Elsevier, vol. 41(7), pages 784-794, August.
    13. Thomas W. Quan & Kevin R. Williams, 2018. "Product variety, across‐market demand heterogeneity, and the value of online retail," RAND Journal of Economics, RAND Corporation, vol. 49(4), pages 877-913, December.
    14. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    15. Nevo, Aviv, 2001. "Measuring Market Power in the Ready-to-Eat Cereal Industry," Econometrica, Econometric Society, vol. 69(2), pages 307-342, March.
    16. Timothy B. Armstrong, 2016. "Large Market Asymptotics for Differentiated Product Demand Estimators With Economic Models of Supply," Econometrica, Econometric Society, vol. 84, pages 1961-1980, September.
    17. Harold D. Chiang & Kengo Kato & Yuya Sasaki, 2023. "Inference for High-Dimensional Exchangeable Arrays," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 118(543), pages 1595-1605, July.
    18. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2017. "Nonparametric identification of random coefficients in endogenous and heterogeneous aggregate demand models," CeMMAP working papers 11/17, Institute for Fiscal Studies.
    19. Lewbel, Arthur, 2000. "Semiparametric qualitative response model estimation with unknown heteroscedasticity or instrumental variables," Journal of Econometrics, Elsevier, vol. 97(1), pages 145-177, July.
    20. Jinhyuk Lee & Kyoungwon Seo, 2015. "A computationally fast estimator for random coefficients logit demand models using aggregate data," RAND Journal of Economics, RAND Corporation, vol. 46(1), pages 86-102, March.
    21. Fosgerau, Mogens & Mabit, Stefan L., 2013. "Easy and flexible mixture distributions," Economics Letters, Elsevier, vol. 120(2), pages 206-210.
    22. Chen, Xiaohong & Liao, Zhipeng & Sun, Yixiao, 2014. "Sieve inference on possibly misspecified semi-nonparametric time series models," Journal of Econometrics, Elsevier, vol. 178(P3), pages 639-658.
    23. Chunrong Ai & Xiaohong Chen, 2003. "Efficient Estimation of Models with Conditional Moment Restrictions Containing Unknown Functions," Econometrica, Econometric Society, vol. 71(6), pages 1795-1843, November.
    24. McFadden, Daniel, 1974. "The measurement of urban travel demand," Journal of Public Economics, Elsevier, vol. 3(4), pages 303-328, November.
    25. Patrick Bajari & C. Lanier Benkard, 2005. "Demand Estimation with Heterogeneous Consumers and Unobserved Product Characteristics: A Hedonic Approach," Journal of Political Economy, University of Chicago Press, vol. 113(6), pages 1239-1276, December.
    26. Christopher R. Knittel & Konstantinos Metaxoglou, 2014. "Estimation of Random-Coefficient Demand Models: Two Empiricists' Perspective," The Review of Economics and Statistics, MIT Press, vol. 96(1), pages 34-59, March.
    27. Steven T. Berry, 1994. "Estimating Discrete-Choice Models of Product Differentiation," RAND Journal of Economics, The RAND Corporation, vol. 25(2), pages 242-262, Summer.
    28. Donald, Stephen G. & Imbens, Guido W. & Newey, Whitney K., 2003. "Empirical likelihood estimation and consistent tests with conditional moment restrictions," Journal of Econometrics, Elsevier, vol. 117(1), pages 55-93, November.
    29. Andres Santos, 2012. "Inference in Nonparametric Instrumental Variables With Partial Identification," Econometrica, Econometric Society, vol. 80(1), pages 213-275, January.
    30. Thomas W. Quan & Kevin R. Williams, 2017. "Product Variety, Across-Market Demand Heterogeneity, and the Value of Online Retail," Cowles Foundation Discussion Papers 2054R3, Cowles Foundation for Research in Economics, Yale University, revised Jun 2018.
    31. Amil Petrin, 2002. "Quantifying the Benefits of New Products: The Case of the Minivan," Journal of Political Economy, University of Chicago Press, vol. 110(4), pages 705-729, August.
    32. Berry, Steven & Levinsohn, James & Pakes, Ariel, 1995. "Automobile Prices in Market Equilibrium," Econometrica, Econometric Society, vol. 63(4), pages 841-890, July.
    33. Freyberger, Joachim, 2015. "Asymptotic theory for differentiated products demand models with many markets," Journal of Econometrics, Elsevier, vol. 185(1), pages 162-181.
    34. Bierens, Herman J., 2008. "Semi-Nonparametric Interval-Censored Mixed Proportional Hazard Models: Identification And Consistency Results," Econometric Theory, Cambridge University Press, vol. 24(3), pages 749-794, June.
    35. Jeremy T. Fox & Amit Gandhi, 2016. "Nonparametric identification and estimation of random coefficients in multinomial choice models," RAND Journal of Economics, RAND Corporation, vol. 47(1), pages 118-139, February.
    36. Whitney K. Newey & James L. Powell, 2003. "Instrumental Variable Estimation of Nonparametric Models," Econometrica, Econometric Society, vol. 71(5), pages 1565-1578, September.
    37. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    38. Bordley, Robert, 2013. "Discrete choice with large choice sets," Economics Letters, Elsevier, vol. 118(1), pages 13-15.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Steven T. Berry & Philip A. Haile, 2021. "Foundations of Demand Estimation," Cowles Foundation Discussion Papers 2301, Cowles Foundation for Research in Economics, Yale University.
    2. Pietro Tebaldi & Alexander Torgovitsky & Hanbin Yang, 2023. "Nonparametric Estimates of Demand in the California Health Insurance Exchange," Econometrica, Econometric Society, vol. 91(1), pages 107-146, January.
    3. Wang, Ao, 2023. "Sieve BLP: A semi-nonparametric model of demand for differentiated products," Journal of Econometrics, Elsevier, vol. 235(2), pages 325-351.
    4. Moon, Hyungsik Roger & Shum, Matthew & Weidner, Martin, 2018. "Estimation of random coefficients logit demand models with interactive fixed effects," Journal of Econometrics, Elsevier, vol. 206(2), pages 613-644.
    5. Mogens Fosgerau & Julien Monardo & André de Palma, 2024. "The Inverse Product Differentiation Logit Model," American Economic Journal: Microeconomics, American Economic Association, vol. 16(4), pages 329-370, November.
    6. Wang, Ao, 2021. "A BLP Demand Model of Product-Level Market Shares with Complementarity," The Warwick Economics Research Paper Series (TWERPS) 1351, University of Warwick, Department of Economics.
    7. Amit Gandhi & Jean-François Houde, 2019. "Measuring Substitution Patterns in Differentiated-Products Industries," NBER Working Papers 26375, National Bureau of Economic Research, Inc.
    8. Laura Grigolon, 2021. "Blurred boundaries: A flexible approach for segmentation applied to the car market," Quantitative Economics, Econometric Society, vol. 12(4), pages 1273-1305, November.
    9. Matthew Backus & Christopher Conlon & Michael Sinkinson, 2021. "Common Ownership and Competition in the Ready-to-Eat Cereal Industry," NBER Working Papers 28350, National Bureau of Economic Research, Inc.
    10. Christopher Conlon & Jeff Gortmaker, 2020. "Best practices for differentiated products demand estimation with PyBLP," RAND Journal of Economics, RAND Corporation, vol. 51(4), pages 1108-1161, December.
    11. Ketz, Philipp, 2019. "On asymptotic size distortions in the random coefficients logit model," Journal of Econometrics, Elsevier, vol. 212(2), pages 413-432.
    12. Hyungsik Roger Moon & Matthew Shum & Martin Weidner, 2017. "Estimation of random coefficients logit demand models with interactive fixed effects," CeMMAP working papers 12/17, Institute for Fiscal Studies.
    13. Steven T. Berry & Philip A. Haile, 2009. "Nonparametric Identification of Multinomial Choice Demand Models with Heterogeneous Consumers," NBER Working Papers 15276, National Bureau of Economic Research, Inc.
    14. Bokhari, Farasat A.S. & Mariuzzo, Franco, 2018. "Demand estimation and merger simulations for drugs: Logits v. AIDS," International Journal of Industrial Organization, Elsevier, vol. 61(C), pages 653-685.
    15. Kandelhardt, Johannes, 2023. "Flexible estimation of random coefficient logit models of differentiated product demand," DICE Discussion Papers 399, Heinrich Heine University Düsseldorf, Düsseldorf Institute for Competition Economics (DICE).
    16. Byrne, David P. & Imai, Susumu & Jain, Neelam & Sarafidis, Vasilis, 2022. "Instrument-free identification and estimation of differentiated products models using cost data," Journal of Econometrics, Elsevier, vol. 228(2), pages 278-301.
    17. Fabian Dunker & Stefan Hoderlein & Hiroaki Kaido, 2023. "Nonparametric identification of random coefficients in aggregate demand models for differentiated products," The Econometrics Journal, Royal Economic Society, vol. 26(2), pages 279-306.
    18. Amit Gandhi & Zhentong Lu & Xiaoxia Shi, 2023. "Estimating demand for differentiated products with zeroes in market share data," Quantitative Economics, Econometric Society, vol. 14(2), pages 381-418, May.
    19. Giovanni Compiani, 2022. "Market counterfactuals and the specification of multiproduct demand: A nonparametric approach," Quantitative Economics, Econometric Society, vol. 13(2), pages 545-591, May.
    20. David P. Byrne & Susumu Imai & Vasilis Sarafidis, 2015. "Instrument-free Identifcation and Estimation of the Diferentiated Products Models," Department of Economics - Working Papers Series 1198, The University of Melbourne.

    More about this item

    Keywords

    Demand estimation; Differentiated products; Random coefficients logit; Semi-nonparametric estimation;
    All these keywords.

    JEL classification:

    • C01 - Mathematical and Quantitative Methods - - General - - - Econometrics
    • C14 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Semiparametric and Nonparametric Methods: General
    • L10 - Industrial Organization - - Market Structure, Firm Strategy, and Market Performance - - - General
    • L62 - Industrial Organization - - Industry Studies: Manufacturing - - - Automobiles; Other Transportation Equipment; Related Parts and Equipment

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:235:y:2023:i:2:p:2245-2265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/jeconom .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.