IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.20204.html
   My bibliography  Save this paper

Fitting Dynamically Misspecified Models: An Optimal Transportation Approach

Author

Listed:
  • Jean-Jacques Forneron
  • Zhongjun Qu

Abstract

This paper considers filtering, parameter estimation, and testing for potentially dynamically misspecified state-space models. When dynamics are misspecified, filtered values of state variables often do not satisfy model restrictions, making them hard to interpret, and parameter estimates may fail to characterize the dynamics of filtered variables. To address this, a sequential optimal transportation approach is used to generate a model-consistent sample by mapping observations from a flexible reduced-form to the structural conditional distribution iteratively. Filtered series from the generated sample are model-consistent. Specializing to linear processes, a closed-form Optimal Transport Filtering algorithm is derived. Minimizing the discrepancy between generated and actual observations defines an Optimal Transport Estimator. Its large sample properties are derived. A specification test determines if the model can reproduce the sample path, or if the discrepancy is statistically significant. Empirical applications to trend-cycle decomposition, DSGE models, and affine term structure models illustrate the methodology and the results.

Suggested Citation

  • Jean-Jacques Forneron & Zhongjun Qu, 2024. "Fitting Dynamically Misspecified Models: An Optimal Transportation Approach," Papers 2412.20204, arXiv.org.
  • Handle: RePEc:arx:papers:2412.20204
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.20204
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tetsuya Kaji & Elena Manresa & Guillaume Pouliot, 2023. "An Adversarial Approach to Structural Estimation," Econometrica, Econometric Society, vol. 91(6), pages 2041-2063, November.
    2. Jesús Fernández-Villaverde & Juan F. Rubio-Ramírez & Thomas J. Sargent & Mark W. Watson, 2007. "ABCs (and Ds) of Understanding VARs," American Economic Review, American Economic Association, vol. 97(3), pages 1021-1026, June.
    3. Kuersteiner, Guido M., 2005. "Automatic Inference For Infinite Order Vector Autoregressions," Econometric Theory, Cambridge University Press, vol. 21(1), pages 85-115, February.
    4. Marco Del Negro & Frank Schorfheide, 2009. "Monetary Policy Analysis with Potentially Misspecified Models," American Economic Review, American Economic Association, vol. 99(4), pages 1415-1450, September.
    5. Ang, Andrew & Piazzesi, Monika, 2003. "A no-arbitrage vector autoregression of term structure dynamics with macroeconomic and latent variables," Journal of Monetary Economics, Elsevier, vol. 50(4), pages 745-787, May.
    6. Jean-Jacques Forneron, 2019. "A Sieve-SMM Estimator for Dynamic Models," Papers 1902.01456, arXiv.org, revised Jan 2023.
    7. Silvia Goncalves & Lutz Kilian, 2007. "Asymptotic and Bootstrap Inference for AR(∞) Processes with Conditional Heteroskedasticity," Econometric Reviews, Taylor & Francis Journals, vol. 26(6), pages 609-641.
    8. Harvey,Andrew C., 1991. "Forecasting, Structural Time Series Models and the Kalman Filter," Cambridge Books, Cambridge University Press, number 9780521405737, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. David Bolder & Shudan Liu, 2007. "Examining Simple Joint Macroeconomic and Term-Structure Models: A Practitioner's Perspective," Staff Working Papers 07-49, Bank of Canada.
    2. Lee, Yoon-Jin & Okui, Ryo & Shintani, Mototsugu, 2018. "Asymptotic inference for dynamic panel estimators of infinite order autoregressive processes," Journal of Econometrics, Elsevier, vol. 204(2), pages 147-158.
    3. Dewachter, Hans & Iania, Leonardo, 2011. "An Extended Macro-Finance Model with Financial Factors," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 46(6), pages 1893-1916, December.
    4. Oscar Jorda & Alan Taylor & Sanjay Singh, 2019. "The Long-Run Effects of Monetary Policy," 2019 Meeting Papers 1307, Society for Economic Dynamics.
    5. Warne, Anders & Coenen, Günter & Christoffel, Kai, 2010. "Forecasting with DSGE models," Working Paper Series 1185, European Central Bank.
    6. Hatcher, Michael & Minford, Patrick, 2023. "Chameleon models in economics: A note," Cardiff Economics Working Papers E2023/10, Cardiff University, Cardiff Business School, Economics Section.
    7. Byrne, Joseph P. & Cao, Shuo & Korobilis, Dimitris, 2019. "Decomposing global yield curve co-movement," Journal of Banking & Finance, Elsevier, vol. 106(C), pages 500-513.
    8. Maurizio Luisi & Jeffery D. Amato, 2006. "Macro factors in the term structure of credit spreads," BIS Working Papers 203, Bank for International Settlements.
    9. Andrea Carriero, 2011. "Forecasting The Yield Curve Using Priors From No‐Arbitrage Affine Term Structure Models," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 52(2), pages 425-459, May.
    10. Dorota Toczydlowska & Gareth W. Peters, 2018. "Financial Big Data Solutions for State Space Panel Regression in Interest Rate Dynamics," Econometrics, MDPI, vol. 6(3), pages 1-45, July.
    11. Paccagnini, Alessia, 2017. "Dealing with Misspecification in DSGE Models: A Survey," MPRA Paper 82914, University Library of Munich, Germany.
    12. Bekiros, Stelios & Cardani, Roberta & Paccagnini, Alessia & Villa, Stefania, 2016. "Dealing with financial instability under a DSGE modeling approach with banking intermediation: A predictability analysis versus TVP-VARs," Journal of Financial Stability, Elsevier, vol. 26(C), pages 216-227.
    13. Niraj Poudyal & Aris Spanos, 2022. "Model Validation and DSGE Modeling," Econometrics, MDPI, vol. 10(2), pages 1-25, April.
    14. Marcin Kolasa & Michał Rubaszek & Paweł Skrzypczyński, 2012. "Putting the New Keynesian DSGE Model to the Real‐Time Forecasting Test," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 44(7), pages 1301-1324, October.
    15. Hans Dewachter & Leonardo Iania & Marco Lyrio, 2014. "Information In The Yield Curve: A Macro‐Finance Approach," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 29(1), pages 42-64, January.
    16. Monti, Francesca, 2015. "Can a data-rich environment help identify the sources of model misspecification?," Bank of England working papers 527, Bank of England.
    17. Meyer-Gohde, Alexander & Neuhoff, Daniel, 2015. "Generalized exogenous processes in DSGE: A Bayesian approach," SFB 649 Discussion Papers 2015-014, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
    18. Boeckx, Jef & Iania, Leonardo & Wauters, Joris, 2023. "Macroeconomic drivers of Inflation Expectations and Inflation Risk Premia," LIDAM Discussion Papers LFIN 2023003, Université catholique de Louvain, Louvain Finance (LFIN).
    19. Stelios Bekiros & Alessia Paccagnini, 2013. "On the predictability of time-varying VAR and DSGE models," Empirical Economics, Springer, vol. 45(1), pages 635-664, August.
    20. Tovar, Camilo Ernesto, 2009. "DSGE Models and Central Banks," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 3, pages 1-31.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.20204. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.