IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2412.12393.html
   My bibliography  Save this paper

Emergence of Power-Law and Other Wealth Distributions in Crowd of Heterogeneous Agents

Author

Listed:
  • Jake J. Xia

Abstract

This study investigates the emergence of power-law and other concentrated distributions through a feedback loop model in crowd interactions. Agents act by their response functions to observations and external forces, while observations change by the aggregated actions of all agents, weighted by their respective influence, i.e. power or wealth. Agents wealth dynamically adjust based on the alignment between an agents actions and observation outcomes: agents gain wealth when their actions align with observed trends and lose wealth otherwise. A reward function, that describes the change of agents wealth at each time step, manifests the differences of response functions of agents to observations. When all agents responses are set to zero and feedback loop is broken, agents wealth follow a normal or lognormal distribution. Otherwise, this response-reward iterative feedback mechanism results in concentrated wealth distributions, characterized by a small number of dominant agents and the marginalization of the majority. Contrasted to past studies, such concentration is not limited only to asymptotic behavior at the upper tail for large variables, nor does it require the reward function to be linear to agents previous wealth as formulated in random growth model and network preferential attachment. Probability density functions for various distributions are more visually distinguishable for small values at the lower tail. In application of this model, key differences in income and wealth distributions in the US vs Japan are attributed to different response functions of agents in the two countries. The model applicability extends beyond social systems to other many-body systems with analogous feedback mechanisms, where power-law distributions represent a rare subset of general concentrated outcomes.

Suggested Citation

  • Jake J. Xia, 2024. "Emergence of Power-Law and Other Wealth Distributions in Crowd of Heterogeneous Agents," Papers 2412.12393, arXiv.org.
  • Handle: RePEc:arx:papers:2412.12393
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2412.12393
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Anna D. Broido & Aaron Clauset, 2019. "Scale-free networks are rare," Nature Communications, Nature, vol. 10(1), pages 1-10, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goldrosen, Nicholas, 2024. "Is corrections officers' use of illegal force networked? Network structure, brokerage, and key players in the New York City Department of Correction," Journal of Criminal Justice, Elsevier, vol. 92(C).
    2. Vinayak, & Raghuvanshi, Adarsh & kshitij, Avinash, 2023. "Signatures of capacity development through research collaborations in artificial intelligence and machine learning," Journal of Informetrics, Elsevier, vol. 17(1).
    3. Martins, Francisco Leonardo Bezerra & do Nascimento, José Cláudio, 2022. "Power law dynamics in genealogical graphs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    4. Fleming, Sean W., 2021. "Scale-free networks, 1/f dynamics, and nonlinear conflict size scaling from an agent-based simulation model of societal-scale bilateral conflict and cooperation," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 567(C).
    5. Shang, Yilun, 2021. "Generalized k-cores of networks under attack with limited knowledge," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    6. Wang, Ziyulong & Huang, Ketong & Massobrio, Renzo & Bombelli, Alessandro & Cats, Oded, 2024. "Quantification and comparison of hierarchy in Public Transport Networks," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 634(C).
    7. D'Acci, Luca S., 2023. "Is housing price distribution across cities, scale invariant? Fractal distribution of settlements' house prices as signature of self-organized complexity," Chaos, Solitons & Fractals, Elsevier, vol. 174(C).
    8. Liu, Huixia & Lu, Lulu & Zhu, Yuan & Wei, Zhouchao & Yi, Ming, 2022. "Stochastic resonance: The response to envelope modulation signal for neural networks with different topologies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 607(C).
    9. Meng, Xiangyi & Zhou, Bin, 2023. "Scale-free networks beyond power-law degree distribution," Chaos, Solitons & Fractals, Elsevier, vol. 176(C).
    10. Partida, Alberto & Gerassis, Saki & Criado, Regino & Romance, Miguel & Giráldez, Eduardo & Taboada, Javier, 2022. "The chaotic, self-similar and hierarchical patterns in Bitcoin and Ethereum price series," Chaos, Solitons & Fractals, Elsevier, vol. 165(P2).
    11. Coulibaly, Saliya & Bessin, Florent & Clerc, Marcel G. & Mussot, Arnaud, 2022. "Precursors-driven machine learning prediction of chaotic extreme pulses in Kerr resonators," Chaos, Solitons & Fractals, Elsevier, vol. 160(C).
    12. Mohammad Ghaderi, 2020. "Public health interventions in the face of pandemics: network structure, social distancing, and heterogeneity," Economics Working Papers 1732, Department of Economics and Business, Universitat Pompeu Fabra.
    13. Andrey Dmitriev & Victor Dmitriev & Stepan Balybin, 2019. "Self-Organized Criticality on Twitter: Phenomenological Theory and Empirical Investigation Based on Data Analysis Results," Complexity, Hindawi, vol. 2019, pages 1-16, December.
    14. Ning-Ning Wang & Zhen Jin & Xiao-Long Peng, 2019. "Community Detection with Self-Adapting Switching Based on Affinity," Complexity, Hindawi, vol. 2019, pages 1-16, November.
    15. Bin Zhou & Petter Holme & Zaiwu Gong & Choujun Zhan & Yao Huang & Xin Lu & Xiangyi Meng, 2023. "The nature and nurture of network evolution," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
    16. Rumeng Zhang & Lihong Li, 2023. "Research on Evolutionary Game and Simulation of Information Sharing in Prefabricated Building Supply Chain," Sustainability, MDPI, vol. 15(13), pages 1-24, June.
    17. Mao, Jin & Liang, Zhentao & Cao, Yujie & Li, Gang, 2020. "Quantifying cross-disciplinary knowledge flow from the perspective of content: Introducing an approach based on knowledge memes," Journal of Informetrics, Elsevier, vol. 14(4).
    18. Mateos, Diego M. & Morana, Federico & Aimar, Hugo, 2022. "A graph complexity measure based on the spectral analysis of the Laplace operator," Chaos, Solitons & Fractals, Elsevier, vol. 156(C).
    19. Mohammad Ghaderi, 2020. "Public Health Interventions in the Face of Pandemics: Network Structure, Social Distancing, and Heterogeneity," Working Papers 1193, Barcelona School of Economics.
    20. Bombelli, Alessandro & Santos, Bruno F. & Tavasszy, Lóránt, 2020. "Analysis of the air cargo transport network using a complex network theory perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2412.12393. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.