Inference On The Dimension Of The Nonstationary Subspace In Functional Time Series
Author
Abstract
Suggested Citation
Download full text from publisher
Other versions of this item:
- Morten Ørregaard Nielsen & Wonk-ki Seo & Dakyung Seong, 2022. "Inference on the dimension of the nonstationary subspace in functional time series," CREATES Research Papers 2022-04, Department of Economics and Business Economics, Aarhus University.
- Morten Ørregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2020. "Inference on the dimension of the nonstationary subspace in functional time series," Working Paper 1420, Economics Department, Queen's University.
References listed on IDEAS
- Horváth, Lajos & Kokoszka, Piotr & Rice, Gregory, 2014. "Testing stationarity of functional time series," Journal of Econometrics, Elsevier, vol. 179(1), pages 66-82.
- Nielsen, Morten Ørregaard, 2010.
"Nonparametric cointegration analysis of fractional systems with unknown integration orders,"
Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
- Morten Ø. Nielsen, 2008. "Nonparametric Cointegration Analysis Of Fractional Systems With Unknown Integration Orders," Working Paper 1174, Economics Department, Queen's University.
- Morten Ørregaard Nielsen, 2009. "Nonparametric Cointegration Analysis of Fractional Systems With Unknown Integration Orders," CREATES Research Papers 2009-02, Department of Economics and Business Economics, Aarhus University.
- Aue, Alexander & Van Delft, Anne, 2017. "Testing for stationarity of functional time series in the frequency domain," LIDAM Discussion Papers ISBA 2017001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
- Taylor, A. M. Robert, 2005. "Variance ratio tests of the seasonal unit root hypothesis," Journal of Econometrics, Elsevier, vol. 124(1), pages 33-54, January.
- Alexei Onatski & Chen Wang, 2018.
"Alternative Asymptotics for Cointegration Tests in Large VARs,"
Econometrica, Econometric Society, vol. 86(4), pages 1465-1478, July.
- Alexei Onatski & Chen Wang, 2016. "Alternative Asymptotics for Cointegration Tests in Large VARs," Cambridge Working Papers in Economics 1637, Faculty of Economics, University of Cambridge.
- Zhang, Rongmao & Robinson, Peter & Yao, Qiwei, 2019. "Identifying cointegration by eigenanalysis," LSE Research Online Documents on Economics 87431, London School of Economics and Political Science, LSE Library.
- Nielsen, Morten Ørregaard, 2009.
"A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic,"
Econometric Theory, Cambridge University Press, vol. 25(6), pages 1515-1544, December.
- Morten Ø. Nielsen, 2008. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Working Paper 1185, Economics Department, Queen's University.
- Morten Ørregaard Nielsen, 2008. "A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic," CREATES Research Papers 2008-36, Department of Economics and Business Economics, Aarhus University.
- Mas, André, 2002. "Weak convergence for the covariance operators of a Hilbertian linear process," Stochastic Processes and their Applications, Elsevier, vol. 99(1), pages 117-135, May.
- Johansen, Soren, 1995. "Likelihood-Based Inference in Cointegrated Vector Autoregressive Models," OUP Catalogue, Oxford University Press, number 9780198774501.
- Chang, Yoosoon & Kim, Chang Sik & Park, Joon Y., 2016. "Nonstationarity in time series of state densities," Journal of Econometrics, Elsevier, vol. 192(1), pages 152-167.
- Ho, Mun S & Sorensen, Bent E, 1996. "Finding Cointegration Rank in High Dimensional Systems Using the Johansen Test: An Illustration Using Data Based Monte Carlo Simulations," The Review of Economics and Statistics, MIT Press, vol. 78(4), pages 726-732, November.
- Rongmao Zhang & Peter Robinson & Qiwei Yao, 2019. "Identifying Cointegration by Eigenanalysis," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 114(526), pages 916-927, April.
- Breitung, Jorg, 2002. "Nonparametric tests for unit roots and cointegration," Journal of Econometrics, Elsevier, vol. 108(2), pages 343-363, June.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
- Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org.
- Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised May 2024.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Christian Leschinski & Michelle Voges & Philipp Sibbertsen, 2021.
"A comparison of semiparametric tests for fractional cointegration,"
Statistical Papers, Springer, vol. 62(4), pages 1997-2030, August.
- Leschinski, Christian & Voges, Michelle & Sibbertsen, Philipp, 2019. "A Comparison of Semiparametric Tests for Fractional Cointegration," Hannover Economic Papers (HEP) dp-651, Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät.
- Gianluca Cubadda & Marco Mazzali, 2024.
"The vector error correction index model: representation, estimation and identification,"
The Econometrics Journal, Royal Economic Society, vol. 27(1), pages 126-150.
- Gianluca Cubadda & Marco Mazzali, 2023. "The Vector Error Correction Index Model: Representation, Estimation and Identification," CEIS Research Paper 556, Tor Vergata University, CEIS, revised 04 Apr 2023.
- Morten {O}rregaard Nielsen & Won-Ki Seo & Dakyung Seong, 2023. "Inference on common trends in functional time series," Papers 2312.00590, arXiv.org, revised May 2024.
- Mehdi Hosseinkouchack & Uwe Hassler, 2016. "Powerful Unit Root Tests Free of Nuisance Parameters," Journal of Time Series Analysis, Wiley Blackwell, vol. 37(4), pages 533-554, July.
- Nielsen, Morten Ørregaard, 2010.
"Nonparametric cointegration analysis of fractional systems with unknown integration orders,"
Journal of Econometrics, Elsevier, vol. 155(2), pages 170-187, April.
- Morten Ø. Nielsen, 2008. "Nonparametric Cointegration Analysis Of Fractional Systems With Unknown Integration Orders," Working Paper 1174, Economics Department, Queen's University.
- Morten Ørregaard Nielsen, 2009. "Nonparametric Cointegration Analysis of Fractional Systems With Unknown Integration Orders," CREATES Research Papers 2009-02, Department of Economics and Business Economics, Aarhus University.
- Javier Haulde & Morten Ørregaard Nielsen, 2022.
"Fractional integration and cointegration,"
CREATES Research Papers
2022-02, Department of Economics and Business Economics, Aarhus University.
- Javier Hualde & Morten {O}rregaard Nielsen, 2022. "Fractional integration and cointegration," Papers 2211.10235, arXiv.org.
- Nielsen, Morten, 2008.
"A Powerful Tuning Parameter Free Test of the Autoregressive Unit Root Hypothesis,"
Working Papers
08-05, Cornell University, Center for Analytic Economics.
- Morten Ø. Nielsen, 2008. "A Powerful Tuning Parameter Free Test Of The Autoregressive Unit Root Hypothesis," Working Paper 1175, Economics Department, Queen's University.
- Lee, Ji Hyung & Shi, Zhentao & Gao, Zhan, 2022.
"On LASSO for predictive regression,"
Journal of Econometrics, Elsevier, vol. 229(2), pages 322-349.
- Ji Hyung Lee & Zhentao Shi & Zhan Gao, 2018. "On LASSO for Predictive Regression," Papers 1810.03140, arXiv.org, revised Feb 2021.
- Nielsen, Morten Ørregaard, 2009.
"A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic,"
Econometric Theory, Cambridge University Press, vol. 25(6), pages 1515-1544, December.
- Morten Ørregaard Nielsen, 2008. "A Powerful Test of the Autoregressive Unit Root Hypothesis Based on a Tuning Parameter Free Statistic," CREATES Research Papers 2008-36, Department of Economics and Business Economics, Aarhus University.
- Morten Ø. Nielsen, 2008. "A Powerful Test Of The Autoregressive Unit Root Hypothesis Based On A Tuning Parameter Free Statistic," Working Paper 1185, Economics Department, Queen's University.
- Zhaoxing Gao & Ruey S. Tsay, 2020. "Modeling High-Dimensional Unit-Root Time Series," Papers 2005.03496, arXiv.org, revised Aug 2020.
- Ziwei Mei & Zhentao Shi, 2022. "On LASSO for High Dimensional Predictive Regression," Papers 2212.07052, arXiv.org, revised Jan 2024.
- Onatski, Alexei & Wang, Chen, 2019.
"Extreme canonical correlations and high-dimensional cointegration analysis,"
Journal of Econometrics, Elsevier, vol. 212(1), pages 307-322.
- Onatski, A. & Wang, C., 2018. "Extreme canonical correlations and high-dimensional cointegration analysis," Cambridge Working Papers in Economics 1805, Faculty of Economics, University of Cambridge.
- Smeekes, Stephan & Wijler, Etienne, 2021.
"An automated approach towards sparse single-equation cointegration modelling,"
Journal of Econometrics, Elsevier, vol. 221(1), pages 247-276.
- Stephan Smeekes & Etienne Wijler, 2018. "An Automated Approach Towards Sparse Single-Equation Cointegration Modelling," Papers 1809.08889, arXiv.org, revised Jul 2020.
- Won-Ki Seo, 2020. "Functional Principal Component Analysis for Cointegrated Functional Time Series," Papers 2011.12781, arXiv.org, revised Apr 2023.
- Massimo Franchi & Iliyan Georgiev & Paolo Paruolo, 2024. "Canonical correlation analysis of stochastic trends via functional approximation," Papers 2411.19572, arXiv.org.
- Al-Sadoon, Majid M., 2017. "A unifying theory of tests of rank," Journal of Econometrics, Elsevier, vol. 199(1), pages 49-62.
- Dechert, Andreas, 2014. "Fraktionale Kointegrationsbeziehungen zwischen Euribor-Zinssätzen," W.E.P. - Würzburg Economic Papers 93, University of Würzburg, Department of Economics.
- Eroğlu, Burak Alparslan & Göğebakan, Kemal Çağlar & Trokić, Mirza, 2018. "Powerful nonparametric seasonal unit root tests," Economics Letters, Elsevier, vol. 167(C), pages 75-80.
- Alain Hecq & Luca Margaritella & Stephan Smeekes, 2023. "Inference in Non-stationary High-Dimensional VARs," Papers 2302.01434, arXiv.org, revised Sep 2023.
- Lin, Yingqian & Tu, Yundong & Yao, Qiwei, 2020. "Estimation for double-nonlinear cointegration," LSE Research Online Documents on Economics 103830, London School of Economics and Political Science, LSE Library.
More about this item
JEL classification:
- C32 - Mathematical and Quantitative Methods - - Multiple or Simultaneous Equation Models; Multiple Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:etheor:v:39:y:2023:i:3:p:443-480_1. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ect .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.