IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2109.00433.html
   My bibliography  Save this paper

Closed-form portfolio optimization under GARCH models

Author

Listed:
  • Marcos Escobar-Anel
  • Maximilian Gollart
  • Rudi Zagst

Abstract

This paper develops the first closed-form optimal portfolio allocation formula for a spot asset whose variance follows a GARCH(1,1) process. We consider an investor with constant relative risk aversion (CRRA) utility who wants to maximize the expected utility from terminal wealth under a Heston and Nandi (2000) GARCH (HN-GARCH) model. We obtain closed formulas for the optimal investment strategy, the value function and the optimal terminal wealth. We find the optimal strategy is independent of the development of the risky asset, and the solution converges to that of a continuous-time Heston stochastic volatility model, albeit under additional conditions. For a daily trading scenario, the optimal solutions are quite robust to variations in the parameters, while the numerical wealth equivalent loss (WEL) analysis shows good performance of the Heston solution, with a quite inferior performance of the Merton solution.

Suggested Citation

  • Marcos Escobar-Anel & Maximilian Gollart & Rudi Zagst, 2021. "Closed-form portfolio optimization under GARCH models," Papers 2109.00433, arXiv.org.
  • Handle: RePEc:arx:papers:2109.00433
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2109.00433
    File Function: Latest version
    Download Restriction: no
    ---><---

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    2. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    3. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    4. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    5. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    6. Michael W. Brandt & Amit Goyal & Pedro Santa-Clara & Jonathan R. Stroud, 2005. "A Simulation Approach to Dynamic Portfolio Choice with an Application to Learning About Return Predictability," The Review of Financial Studies, Society for Financial Studies, vol. 18(3), pages 831-873.
    7. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).
    8. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    9. Paul A. Samuelson, 2011. "Lifetime Portfolio Selection by Dynamic Stochastic Programming," World Scientific Book Chapters, in: Leonard C MacLean & Edward O Thorp & William T Ziemba (ed.), THE KELLY CAPITAL GROWTH INVESTMENT CRITERION THEORY and PRACTICE, chapter 31, pages 465-472, World Scientific Publishing Co. Pte. Ltd..
    10. Huiling Wu & Chengguo Weng & Yan Zeng, 2018. "Equilibrium consumption and portfolio decisions with stochastic discount rate and time-varying utility functions," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 40(2), pages 541-582, March.
    11. Gary Quek & Colin Atkinson, 2017. "Portfolio selection in discrete time with transaction costs and power utility function: a perturbation analysis," Applied Mathematical Finance, Taylor & Francis Journals, vol. 24(2), pages 77-111, March.
    12. Luc Bauwens & Sébastien Laurent & Jeroen V. K. Rombouts, 2006. "Multivariate GARCH models: a survey," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 21(1), pages 79-109, January.
    13. Soyer, Refik & Tanyeri, Kadir, 2006. "Bayesian portfolio selection with multi-variate random variance models," European Journal of Operational Research, Elsevier, vol. 171(3), pages 977-990, June.
    14. R. Cont, 2001. "Empirical properties of asset returns: stylized facts and statistical issues," Quantitative Finance, Taylor & Francis Journals, vol. 1(2), pages 223-236.
    15. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    16. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    17. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    18. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    19. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    20. MOSSIN, Jan, 1968. "Optimal multiperiod portfolio policies," LIDAM Reprints CORE 19, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    21. Dokuchaev, Nikolai, 2010. "Optimality of myopic strategies for multi-stock discrete time market with management costs," European Journal of Operational Research, Elsevier, vol. 200(2), pages 551-556, January.
    22. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2019. "Closed-form variance swap prices under general affine GARCH models and their continuous-time limits," Annals of Operations Research, Springer, vol. 282(1), pages 27-57, November.
    23. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    24. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    2. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.
    3. Marcos Escobar-Anel & Eric Molter & Rudi Zagst, 2024. "The power of derivatives in portfolio optimization under affine GARCH models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 151-181, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.
    2. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    3. Kaminski, Kathryn M. & Lo, Andrew W., 2014. "When do stop-loss rules stop losses?," Journal of Financial Markets, Elsevier, vol. 18(C), pages 234-254.
    4. Daniel Giamouridis & Athanasios Sakkas & Nikolaos Tessaromatis, 2017. "Dynamic Asset Allocation with Liabilities," European Financial Management, European Financial Management Association, vol. 23(2), pages 254-291, March.
    5. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    6. Marcos Escobar-Anel & Eric Molter & Rudi Zagst, 2024. "The power of derivatives in portfolio optimization under affine GARCH models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 151-181, June.
    7. Bilel Jarraya & Abdelfettah Bouri, 2013. "A Theoretical Assessment on Optimal Asset Allocations in Insurance Industry," International Journal of Finance & Banking Studies, Center for the Strategic Studies in Business and Finance, vol. 2(4), pages 30-44, October.
    8. Jakub W. Jurek & Luis M. Viceira, 2011. "Optimal Value and Growth Tilts in Long-Horizon Portfolios," Review of Finance, European Finance Association, vol. 15(1), pages 29-74.
    9. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    10. Laborda, Ricardo & Olmo, Jose, 2017. "Optimal asset allocation for strategic investors," International Journal of Forecasting, Elsevier, vol. 33(4), pages 970-987.
    11. Bodnar, Taras & Parolya, Nestor & Schmid, Wolfgang, 2015. "On the exact solution of the multi-period portfolio choice problem for an exponential utility under return predictability," European Journal of Operational Research, Elsevier, vol. 246(2), pages 528-542.
    12. John Y. Campbell & Luis M. Viceira, 2005. "The Term Structure of the Risk–Return Trade-Off," Financial Analysts Journal, Taylor & Francis Journals, vol. 61(1), pages 34-44, January.
    13. Umar, Zaghum, 2017. "The demand of energy from an optimal portfolio choice perspective," Economic Modelling, Elsevier, vol. 61(C), pages 478-494.
    14. Spierdijk, Laura & Umar, Zaghum, 2014. "Stocks for the long run? Evidence from emerging markets," Journal of International Money and Finance, Elsevier, vol. 47(C), pages 217-238.
    15. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    16. John Y. Campbell & Yeung Lewis Chanb & M. Viceira, 2013. "A multivariate model of strategic asset allocation," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part II, chapter 39, pages 809-848, World Scientific Publishing Co. Pte. Ltd..
    17. Mark E. Wohar & David E. Rapach, 2005. "Return Predictability and the Implied Intertemporal Hedging Demands for Stocks and Bonds: International Evidence," Computing in Economics and Finance 2005 329, Society for Computational Economics.
    18. Ferstl, Robert & Weissensteiner, Alex, 2011. "Asset-liability management under time-varying investment opportunities," Journal of Banking & Finance, Elsevier, vol. 35(1), pages 182-192, January.
    19. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    20. Escobar-Anel, Marcos & Rastegari, Javad & Stentoft, Lars, 2020. "Affine multivariate GARCH models," Journal of Banking & Finance, Elsevier, vol. 118(C).

    More about this item

    JEL classification:

    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • C02 - Mathematical and Quantitative Methods - - General - - - Mathematical Economics

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2109.00433. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.