IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v23y2023i12p1793-1813.html
   My bibliography  Save this article

Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model

Author

Listed:
  • M. Escobar-Anel
  • M. Kschonnek
  • R. Zagst

Abstract

We consider a portfolio optimisation problem for a utility-maximising investor who faces convex constraints on his portfolio allocation in Heston's stochastic volatility model. We apply existing duality methods to obtain a closed-form expression for the optimal portfolio allocation. In doing so, we observe that allocation constraints impact the optimal constrained portfolio allocation in a fundamentally different way in Heston's stochastic volatility model than in the Black Scholes model. In particular, the optimal constrained portfolio may be different from the naive ‘capped’ portfolio, which caps off the optimal unconstrained portfolio at the boundaries of the constraints. Despite this difference, we illustrate by way of a numerical analysis that in most realistic scenarios the capped portfolio leads to slim annual wealth equivalent losses compared to the optimal constrained portfolio. During a financial crisis, however, a capped solution might lead to compelling annual wealth equivalent losses.

Suggested Citation

  • M. Escobar-Anel & M. Kschonnek & R. Zagst, 2023. "Mind the cap!—constrained portfolio optimisation in Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 23(12), pages 1793-1813, November.
  • Handle: RePEc:taf:quantf:v:23:y:2023:i:12:p:1793-1813
    DOI: 10.1080/14697688.2023.2271223
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/14697688.2023.2271223
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697688.2023.2271223?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to look for a different version below or search for a different version of it.

    Other versions of this item:

    References listed on IDEAS

    as
    1. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    2. Thibaut Moyaert & Mikael Petitjean, 2011. "The performance of popular stochastic volatility option pricing models during the subprime crisis," Applied Financial Economics, Taylor & Francis Journals, vol. 21(14), pages 1059-1068.
    3. Stephen J. Taylor, 1994. "Modeling Stochastic Volatility: A Review And Comparative Study," Mathematical Finance, Wiley Blackwell, vol. 4(2), pages 183-204, April.
    4. Yuyang Cheng & Marcos Escobar-Anel, 2021. "Optimal investment strategy in the family of 4/2 stochastic volatility models," Quantitative Finance, Taylor & Francis Journals, vol. 21(10), pages 1723-1751, October.
    5. Carl Lindberg, 2006. "NEWS‐GENERATED DEPENDENCE AND OPTIMAL PORTFOLIOS FOR n STOCKS IN A MARKET OF BARNDORFF‐NIELSEN AND SHEPHARD TYPE," Mathematical Finance, Wiley Blackwell, vol. 16(3), pages 549-568, July.
    6. Peter Carr & Hélyette Geman & Dilip B. Madan & Marc Yor, 2003. "Stochastic Volatility for Lévy Processes," Mathematical Finance, Wiley Blackwell, vol. 13(3), pages 345-382, July.
    7. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    8. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    9. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    10. Thaleia Zariphopoulou, 2001. "A solution approach to valuation with unhedgeable risks," Finance and Stochastics, Springer, vol. 5(1), pages 61-82.
    11. Dong, Yinghui & Zheng, Harry, 2020. "Optimal investment with S-shaped utility and trading and Value at Risk constraints: An application to defined contribution pension plan," European Journal of Operational Research, Elsevier, vol. 281(2), pages 341-356.
    12. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    13. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    14. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2023. "Portfolio Optimization with Allocation Constraints and Stochastic Factor Market Dynamics," Papers 2303.09835, arXiv.org.
    15. Branger, Nicole & Schlag, Christian & Schneider, Eva, 2008. "Optimal portfolios when volatility can jump," Journal of Banking & Finance, Elsevier, vol. 32(6), pages 1087-1097, June.
    16. Egloff, Daniel & Leippold, Markus & Wu, Liuren, 2010. "The Term Structure of Variance Swap Rates and Optimal Variance Swap Investments," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(5), pages 1279-1310, October.
    17. Jan Kallsen & Johannes Muhle-Karbe, 2010. "Utility Maximization In Affine Stochastic Volatility Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 13(03), pages 459-477.
    18. repec:dau:papers:123456789/1392 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    2. Branger, Nicole & Muck, Matthias & Seifried, Frank Thomas & Weisheit, Stefan, 2017. "Optimal portfolios when variances and covariances can jump," Journal of Economic Dynamics and Control, Elsevier, vol. 85(C), pages 59-89.
    3. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    4. Marcos Escobar & Sebastian Ferrando & Alexey Rubtsov, 2017. "Optimal investment under multi-factor stochastic volatility," Quantitative Finance, Taylor & Francis Journals, vol. 17(2), pages 241-260, February.
    5. Sascha Desmettre & Sebastian Merkel & Annalena Mickel & Alexander Steinicke, 2023. "Worst-Case Optimal Investment in Incomplete Markets," Papers 2311.10021, arXiv.org.
    6. An Chen & Thai Nguyen & Manuel Rach, 2021. "A collective investment problem in a stochastic volatility environment: The impact of sharing rules," Annals of Operations Research, Springer, vol. 302(1), pages 85-109, July.
    7. Yang Shen, 2020. "Effect of Variance Swap in Hedging Volatility Risk," Risks, MDPI, vol. 8(3), pages 1-34, July.
    8. Yumo Zhang, 2023. "Utility maximization in a stochastic affine interest rate and CIR risk premium framework: a BSDE approach," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 46(1), pages 97-128, June.
    9. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2015. "Robust portfolio choice with derivative trading under stochastic volatility," Journal of Banking & Finance, Elsevier, vol. 61(C), pages 142-157.
    10. Cheng, Yuyang & Escobar-Anel, Marcos, 2023. "A class of portfolio optimization solvable problems," Finance Research Letters, Elsevier, vol. 52(C).
    11. Marcos Escobar-Anel & Yevhen Havrylenko & Rudi Zagst, 2022. "Value-at-Risk constrained portfolios in incomplete markets: a dynamic programming approach to Heston's model," Papers 2208.14152, arXiv.org, revised Jul 2024.
    12. Nicole Branger & An Chen & Antje Mahayni & Thai Nguyen, 2023. "Optimal collective investment: an analysis of individual welfare," Mathematics and Financial Economics, Springer, volume 17, number 5, December.
    13. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    14. Simon Ellersgaard & Martin Tegnér, 2018. "Stochastic volatility for utility maximizers — A martingale approach," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(01), pages 1-39, March.
    15. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    16. Yichen Zhu & Marcos Escobar-Anel, 2021. "A Neural Network Monte Carlo Approximation for Expected Utility Theory," JRFM, MDPI, vol. 14(7), pages 1-18, July.
    17. Elena Boguslavskaya & Dmitry Muravey, 2015. "An explicit solution for optimal investment in Heston model," Papers 1505.02431, arXiv.org, revised May 2015.
    18. Chen, An & Nguyen, Thai & Stadje, Mitja, 2018. "Optimal investment under VaR-Regulation and Minimum Insurance," Insurance: Mathematics and Economics, Elsevier, vol. 79(C), pages 194-209.
    19. Frank Bosserhoff & An Chen & Nils Sorensen & Mitja Stadje, 2021. "On the Investment Strategies in Occupational Pension Plans," Papers 2104.08956, arXiv.org.
    20. Marcos Escobar-Anel & Eric Molter & Rudi Zagst, 2024. "The power of derivatives in portfolio optimization under affine GARCH models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 151-181, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:23:y:2023:i:12:p:1793-1813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.