IDEAS home Printed from https://ideas.repec.org/a/spr/orspec/v46y2024i3d10.1007_s00291-024-00749-z.html
   My bibliography  Save this article

Optimal consumption and investment in general affine GARCH models

Author

Listed:
  • Marcos Escobar-Anel

    (University of Western Ontario)

  • Ben Spies

    (Technical University of Munich)

  • Rudi Zagst

    (Technical University of Munich)

Abstract

Our paper presents the first optimal analytical solution for an investor maximizing both consumption and terminal wealth within expected utility theory in the realm of GARCH models. Working in a general family of affine GARCH models, we derive an affine GARCH optimal wealth process, providing analytical representations for optimal allocation, consumption and value functions. In particular, the optimal consumption ratio avoids the undesirable scenario of investors consuming all wealth prior to maturity. Our numerical study highlights the importance of formally accounting for consumption as it disrupts the level of optimal risky allocations. It also shows a larger impact of stochastic conditional variance (heteroscedasticity) on risky allocations in comparison to the impact of non-Gaussianity. We find, in a numerical study based on S&P 500 index data over a 5-years horizon, that an investor following a Gaussian GARCH strategy can achieve 10% more total consumption and at the same time 8% more terminal wealth than another investor following a constant variance (homoscedastic) strategy.

Suggested Citation

  • Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2024. "Optimal consumption and investment in general affine GARCH models," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 46(3), pages 987-1026, September.
  • Handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-024-00749-z
    DOI: 10.1007/s00291-024-00749-z
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s00291-024-00749-z
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s00291-024-00749-z?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. George Chacko & Luis M. Viceira, 2005. "Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets," The Review of Financial Studies, Society for Financial Studies, vol. 18(4), pages 1369-1402.
    2. Christoffersen, Peter & Heston, Steve & Jacobs, Kris, 2006. "Option valuation with conditional skewness," Journal of Econometrics, Elsevier, vol. 131(1-2), pages 253-284.
    3. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    4. Liu, Jun & Pan, Jun, 2003. "Dynamic derivative strategies," Journal of Financial Economics, Elsevier, vol. 69(3), pages 401-430, September.
    5. Merton, Robert C., 1971. "Optimum consumption and portfolio rules in a continuous-time model," Journal of Economic Theory, Elsevier, vol. 3(4), pages 373-413, December.
    6. Duffie, Darrell & Epstein, Larry G, 1992. "Stochastic Differential Utility," Econometrica, Econometric Society, vol. 60(2), pages 353-394, March.
    7. Heston, Steven L & Nandi, Saikat, 2000. "A Closed-Form GARCH Option Valuation Model," The Review of Financial Studies, Society for Financial Studies, vol. 13(3), pages 585-625.
    8. John Y. Campbell & Luis M. Viceira, 1999. "Consumption and Portfolio Decisions when Expected Returns are Time Varying," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 114(2), pages 433-495.
    9. Merton, Robert C, 1973. "An Intertemporal Capital Asset Pricing Model," Econometrica, Econometric Society, vol. 41(5), pages 867-887, September.
    10. Escobar-Anel, Marcos & Gollart, Maximilian & Zagst, Rudi, 2022. "Closed-form portfolio optimization under GARCH models," Operations Research Perspectives, Elsevier, vol. 9(C).
    11. Merton, Robert C, 1969. "Lifetime Portfolio Selection under Uncertainty: The Continuous-Time Case," The Review of Economics and Statistics, MIT Press, vol. 51(3), pages 247-257, August.
    12. Kim, Tong Suk & Omberg, Edward, 1996. "Dynamic Nonmyopic Portfolio Behavior," The Review of Financial Studies, Society for Financial Studies, vol. 9(1), pages 141-161.
    13. Augustyniak, Maciej & Badescu, Alexandru & Bégin, Jean-François, 2023. "A discrete-time hedging framework with multiple factors and fat tails: On what matters," Journal of Econometrics, Elsevier, vol. 232(2), pages 416-444.
    14. Holger Kraft, 2005. "Optimal portfolios and Heston's stochastic volatility model: an explicit solution for power utility," Quantitative Finance, Taylor & Francis Journals, vol. 5(3), pages 303-313.
    15. Alexandru Badescu & Zhenyu Cui & Juan-Pablo Ortega, 2019. "Closed-form variance swap prices under general affine GARCH models and their continuous-time limits," Annals of Operations Research, Springer, vol. 282(1), pages 27-57, November.
    16. Jun Liu, 2007. "Portfolio Selection in Stochastic Environments," The Review of Financial Studies, Society for Financial Studies, vol. 20(1), pages 1-39, January.
    17. Marcos Escobar-Anel & Ben Spies & Rudi Zagst, 2021. "Expected Utility Theory on General Affine GARCH Models," Applied Mathematical Finance, Taylor & Francis Journals, vol. 28(6), pages 477-507, November.
    18. Duffie, Darrell & Epstein, Larry G, 1992. "Asset Pricing with Stochastic Differential Utility," The Review of Financial Studies, Society for Financial Studies, vol. 5(3), pages 411-436.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Escobar-Anel, Marcos & Spies, Ben & Zagst, Rudi, 2024. "Mean–variance optimization under affine GARCH: A utility-based solution," Finance Research Letters, Elsevier, vol. 59(C).
    2. Escobar-Anel, Marcos & Gollart, Maximilian & Zagst, Rudi, 2022. "Closed-form portfolio optimization under GARCH models," Operations Research Perspectives, Elsevier, vol. 9(C).
    3. Yuan-Hung Hsuku, 2007. "Dynamic consumption and asset allocation with derivative securities," Quantitative Finance, Taylor & Francis Journals, vol. 7(2), pages 137-149.
    4. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    5. Wei, Pengyu & Yang, Charles & Zhuang, Yi, 2023. "Robust consumption and portfolio choice with derivatives trading," European Journal of Operational Research, Elsevier, vol. 304(2), pages 832-850.
    6. Larsen, Linda Sandris & Munk, Claus, 2012. "The costs of suboptimal dynamic asset allocation: General results and applications to interest rate risk, stock volatility risk, and growth/value tilts," Journal of Economic Dynamics and Control, Elsevier, vol. 36(2), pages 266-293.
    7. Hao Xing, 2017. "Consumption–investment optimization with Epstein–Zin utility in incomplete markets," Finance and Stochastics, Springer, vol. 21(1), pages 227-262, January.
    8. Marcos Escobar-Anel & Eric Molter & Rudi Zagst, 2024. "The power of derivatives in portfolio optimization under affine GARCH models," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 47(1), pages 151-181, June.
    9. Castañeda, Pablo & Reus, Lorenzo, 2019. "Suboptimal investment behavior and welfare costs: A simulation based approach," Finance Research Letters, Elsevier, vol. 30(C), pages 170-180.
    10. Nicole Branger & Matthias Muck & Stefan Weisheit, 2019. "Correlation risk and international portfolio choice," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 39(1), pages 128-146, January.
    11. Johannes Muhle-Karbe & Max Reppen & H. Mete Soner, 2016. "A Primer on Portfolio Choice with Small Transaction Costs," Papers 1612.01302, arXiv.org, revised May 2017.
    12. Chenxu Li & Olivier Scaillet & Yiwen Shen, 2020. "Wealth Effect on Portfolio Allocation in Incomplete Markets," Papers 2004.10096, arXiv.org, revised Aug 2021.
    13. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2018. "Dynamic derivative strategies with stochastic interest rates and model uncertainty," Journal of Economic Dynamics and Control, Elsevier, vol. 86(C), pages 49-71.
    14. Escobar, Marcos & Ferrando, Sebastian & Rubtsov, Alexey, 2016. "Portfolio choice with stochastic interest rates and learning about stock return predictability," International Review of Economics & Finance, Elsevier, vol. 41(C), pages 347-370.
    15. Legendre, François & Togola, Djibril, 2016. "Explicit solutions to dynamic portfolio choice problems: A continuous-time detour," Economic Modelling, Elsevier, vol. 58(C), pages 627-641.
    16. Shigeta, Yuki, 2020. "Gain/loss asymmetric stochastic differential utility," Journal of Economic Dynamics and Control, Elsevier, vol. 118(C).
    17. Holger Kraft & Thomas Seiferling & Frank Thomas Seifried, 2017. "Optimal consumption and investment with Epstein–Zin recursive utility," Finance and Stochastics, Springer, vol. 21(1), pages 187-226, January.
    18. Chenxu Li & O. Scaillet & Yiwen Shen, 2020. "Decomposition of Optimal Dynamic Portfolio Choice with Wealth-Dependent Utilities in Incomplete Markets," Swiss Finance Institute Research Paper Series 20-22, Swiss Finance Institute.
    19. Cheng, Yuyang & Escobar-Anel, Marcos, 2023. "A class of portfolio optimization solvable problems," Finance Research Letters, Elsevier, vol. 52(C).
    20. Wu, Hui & Ma, Chaoqun & Yue, Shengjie, 2017. "Momentum in strategic asset allocation," International Review of Economics & Finance, Elsevier, vol. 47(C), pages 115-127.

    More about this item

    Keywords

    Dynamic portfolio optimization; Affine GARCH models; Consumption; IG-GARCH model; Expected utility theory;
    All these keywords.

    JEL classification:

    • C58 - Mathematical and Quantitative Methods - - Econometric Modeling - - - Financial Econometrics
    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:orspec:v:46:y:2024:i:3:d:10.1007_s00291-024-00749-z. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.