IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2208.06549.html
   My bibliography  Save this paper

Exponential utility maximization in small/large financial markets

Author

Listed:
  • Mikl'os R'asonyi
  • Hasanjan Sayit

Abstract

Obtaining utility maximizing optimal portfolios in closed form is a challenging issue when the return vector follows a more general distribution than the normal one. In this note, we give closed form expressions, in markets based on finitely many assets, for optimal portfolios that maximize the expected exponential utility when the return vector follows normal mean-variance mixture models. We then consider large financial markets based on normal mean-variance mixture models also and show that, under exponential utility, the optimal utilities based on small markets converge to the optimal utility in the large financial market. This result shows, in particular, that to reach optimal utility level investors need to diversify their portfolios to include infinitely many assets into their portfolio and with portfolios based on any set of only finitely many assets, they never be able to reach optimum level of utility. In this paper, we also consider portfolio optimization problems with more general class of utility functions and provide an easy-to-implement numerical procedure for locating optimal portfolios. Especially, our approach in this part of the paper reduces a high dimensional problem in locating optimal portfolio into a three dimensional problem for a general class of utility functions.

Suggested Citation

  • Mikl'os R'asonyi & Hasanjan Sayit, 2022. "Exponential utility maximization in small/large financial markets," Papers 2208.06549, arXiv.org, revised Feb 2024.
  • Handle: RePEc:arx:papers:2208.06549
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2208.06549
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Nuerxiati Abudurexiti & Kai He & Dongdong Hu & Svetlozar T. Rachev & Hasanjan Sayit & Ruoyu Sun, 2021. "Portfolio analysis with mean-CVaR and mean-CVaR-skewness criteria based on mean-variance mixture models," Papers 2111.04311, arXiv.org, revised Feb 2023.
    3. Zakamouline, Valeri & Koekebakker, Steen, 2009. "Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1242-1254, July.
    4. Stephen A. Ross, 2013. "The Arbitrage Theory of Capital Asset Pricing," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 1, pages 11-30, World Scientific Publishing Co. Pte. Ltd..
    5. Wenbo Hu & Alec Kercheval, 2010. "Portfolio optimization for student t and skewed t returns," Quantitative Finance, Taylor & Francis Journals, vol. 10(1), pages 91-105.
    6. Martin Hellmich & Stefan Kassberger, 2011. "Efficient and robust portfolio optimization in the multivariate Generalized Hyperbolic framework," Quantitative Finance, Taylor & Francis Journals, vol. 11(10), pages 1503-1516.
    7. John R. Birge & Luis Chavez-Bedoya, 2016. "Portfolio optimization under a generalized hyperbolic skewed t distribution and exponential utility," Quantitative Finance, Taylor & Francis Journals, vol. 16(7), pages 1019-1036, July.
    8. Hiroshi Konno & Rei Yamamoto, 2005. "A Mean-Variance-Skewness Model: Algorithm And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 8(04), pages 409-423.
    9. Hasanjan Sayit, 2022. "A discussion of stochastic dominance and mean-risk optimal portfolio problems based on mean-variance-mixture models," Papers 2202.02488, arXiv.org, revised Dec 2024.
    10. Madan, Dilip B & Seneta, Eugene, 1990. "The Variance Gamma (V.G.) Model for Share Market Returns," The Journal of Business, University of Chicago Press, vol. 63(4), pages 511-524, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nuerxiati Abudurexiti & Erhan Bayraktar & Takaki Hayashi & Hasanjan Sayit, 2024. "Two-fund separation under hyperbolically distributed returns and concave utility function," Papers 2410.04459, arXiv.org.
    2. Wang, Chou-Wen & Liu, Kai & Li, Bin & Tan, Ken Seng, 2022. "Portfolio optimization under multivariate affine generalized hyperbolic distributions," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 49-66.
    3. Saralees Nadarajah & Bo Zhang & Stephen Chan, 2014. "Estimation methods for expected shortfall," Quantitative Finance, Taylor & Francis Journals, vol. 14(2), pages 271-291, February.
    4. Hasanjan Sayit, 2022. "A discussion of stochastic dominance and mean-risk optimal portfolio problems based on mean-variance-mixture models," Papers 2202.02488, arXiv.org, revised Dec 2024.
    5. Dilip B. Madan & Wim Schoutens & King Wang, 2020. "Bilateral multiple gamma returns: Their risks and rewards," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 7(01), pages 1-27, March.
    6. Dilip B. Madan & Wim Schoutens, 2019. "Equilibrium Asset Returns In Financial Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-43, March.
    7. Dilip Madan, 2006. "Equilibrium asset pricing: with non-Gaussian factors and exponential utilities," Quantitative Finance, Taylor & Francis Journals, vol. 6(6), pages 455-463.
    8. Dilip B. Madan & Wim Schoutens, 2019. "Conic asset pricing and the costs of price fluctuations," Annals of Finance, Springer, vol. 15(1), pages 29-58, March.
    9. Dilip B. Madan, 2016. "Risk premia in option markets," Annals of Finance, Springer, vol. 12(1), pages 71-94, February.
    10. Dilip B. Madan & Robert J. Elliott, 2009. "Multiple Priors and Asset Pricing," Methodology and Computing in Applied Probability, Springer, vol. 11(2), pages 211-229, June.
    11. Buchmann, Boris & Kaehler, Benjamin & Maller, Ross & Szimayer, Alexander, 2017. "Multivariate subordination using generalised Gamma convolutions with applications to Variance Gamma processes and option pricing," Stochastic Processes and their Applications, Elsevier, vol. 127(7), pages 2208-2242.
    12. Dilip B. Madan & Wim Schoutens & King Wang, 2017. "Measuring And Monitoring The Efficiency Of Markets," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(08), pages 1-32, December.
    13. Massimiliano Caporin & Grégory M. Jannin & Francesco Lisi & Bertrand B. Maillet, 2014. "A Survey On The Four Families Of Performance Measures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 917-942, December.
    14. Lam, K. & Chang, E. & Lee, M. C., 2002. "An empirical test of the variance gamma option pricing model," Pacific-Basin Finance Journal, Elsevier, vol. 10(3), pages 267-285, June.
    15. Fu, Qi & So, Jacky Yuk-Chow & Li, Xiaotong, 2024. "Stable paretian distribution, return generating processes and habit formation—The implication for equity premium puzzle," The North American Journal of Economics and Finance, Elsevier, vol. 70(C).
    16. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    17. Martijn Pistorius & Johannes Stolte, 2012. "Fast computation of vanilla prices in time-changed models and implied volatilities using rational approximations," Papers 1203.6899, arXiv.org.
    18. Björn Lutz, 2010. "Pricing of Derivatives on Mean-Reverting Assets," Lecture Notes in Economics and Mathematical Systems, Springer, number 978-3-642-02909-7, October.
    19. Peter Van Tassel, 2020. "The Law of One Price in Equity Volatility Markets," Staff Reports 953, Federal Reserve Bank of New York.
    20. Jondeau, Eric, 2016. "Asymmetry in tail dependence in equity portfolios," Computational Statistics & Data Analysis, Elsevier, vol. 100(C), pages 351-368.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2208.06549. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.