IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.04431.html
   My bibliography  Save this paper

A Structural Approach to Growth-at-Risk

Author

Listed:
  • Robert Wojciechowski

Abstract

We identify the structural impulse responses of quantiles of the outcome variable to a shock. Our estimation strategy explicitly distinguishes treatment from control variables, allowing us to model responses of unconditional quantiles while using controls for identification. Disentangling the effect of adding control variables on identification versus interpretation brings our structural quantile impulse responses conceptually closer to structural mean impulse responses. Applying our methodology to study the impact of financial shocks on lower quantiles of output growth confirms that financial shocks have an outsized effect on growth-at-risk, but the magnitude of our estimates is more extreme than in previous studies.

Suggested Citation

  • Robert Wojciechowski, 2024. "A Structural Approach to Growth-at-Risk," Papers 2410.04431, arXiv.org.
  • Handle: RePEc:arx:papers:2410.04431
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.04431
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Òscar Jordà, 2005. "Estimation and Inference of Impulse Responses by Local Projections," American Economic Review, American Economic Association, vol. 95(1), pages 161-182, March.
    2. Gabriel Montes‐Rojas, 2019. "Multivariate Quantile Impulse Response Functions," Journal of Time Series Analysis, Wiley Blackwell, vol. 40(5), pages 739-752, September.
    3. Zhiguo He & Arvind Krishnamurthy, 2019. "A Macroeconomic Framework for Quantifying Systemic Risk," American Economic Journal: Macroeconomics, American Economic Association, vol. 11(4), pages 1-37, October.
    4. Lee, Dong Jin & Kim, Tae-Hwan & Mizen, Paul, 2021. "Impulse response analysis in conditional quantile models with an application to monetary policy," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    5. Simon Gilchrist & Egon Zakrajsek, 2012. "Credit Spreads and Business Cycle Fluctuations," American Economic Review, American Economic Association, vol. 102(4), pages 1692-1720, June.
    6. Antonio F. Galvao JR. & Gabriel Montes-Rojas & Sung Y. Park, 2013. "Quantile Autoregressive Distributed Lag Model with an Application to House Price Returns," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 75(2), pages 307-321, April.
    7. Haroon Mumtaz & Paolo Surico, 2015. "The Transmission Mechanism In Good And Bad Times," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56, pages 1237-1260, November.
    8. Engle, Robert F & Manganelli, Simone, 1999. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," University of California at San Diego, Economics Working Paper Series qt06m3d6nv, Department of Economics, UC San Diego.
    9. Robert F. Engle & Simone Manganelli, 2004. "CAViaR: Conditional Autoregressive Value at Risk by Regression Quantiles," Journal of Business & Economic Statistics, American Statistical Association, vol. 22, pages 367-381, October.
    10. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    11. Mikkel Plagborg‐Møller & Christian K. Wolf, 2021. "Local Projections and VARs Estimate the Same Impulse Responses," Econometrica, Econometric Society, vol. 89(2), pages 955-980, March.
    12. Haroon Mumtaz & Paolo Surico, 2015. "The Transmission Mechanism In Good And Bad Times," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 56(4), pages 1237-1260, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lee, Dong Jin & Kim, Tae-Hwan & Mizen, Paul, 2021. "Impulse response analysis in conditional quantile models with an application to monetary policy," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    2. De Santis, Roberto A. & Tornese, Tommaso, 2024. "US monetary policy is more powerful in low economic growth regimes," Working Paper Series 2919, European Central Bank.
    3. De Santis, Roberto A. & Van der Veken, Wouter, 2020. "Forecasting macroeconomic risk in real time: Great and Covid-19 Recessions," Working Paper Series 2436, European Central Bank.
    4. Leopoldo Catania & Alessandra Luati & Pierluigi Vallarino, 2021. "Economic vulnerability is state dependent," CREATES Research Papers 2021-09, Department of Economics and Business Economics, Aarhus University.
    5. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    6. Giglio, Stefano & Kelly, Bryan & Pruitt, Seth, 2016. "Systemic risk and the macroeconomy: An empirical evaluation," Journal of Financial Economics, Elsevier, vol. 119(3), pages 457-471.
    7. Yunyun Wang & Tatsushi Oka & Dan Zhu, 2023. "Distributional Vector Autoregression: Eliciting Macro and Financial Dependence," Papers 2303.04994, arXiv.org.
    8. Beutel, Johannes & Emter, Lorenz & Metiu, Norbert & Prieto, Esteban & Schüler, Yves, 2022. "The global financial cycle and macroeconomic tail risks," Discussion Papers 43/2022, Deutsche Bundesbank.
    9. Jack Fosten & Daniel Gutknecht & Marc-Oliver Pohle, 2023. "Testing Quantile Forecast Optimality," Papers 2302.02747, arXiv.org, revised Oct 2023.
    10. Marian Vavra, 2023. "Bias-Correction in Time Series Quantile Regression Models," Working and Discussion Papers WP 3/2023, Research Department, National Bank of Slovakia.
    11. Bochmann, Paul & Dieckelmann, Daniel & Fahr, Stephan & Ruzicka, Josef, 2023. "Financial stability considerations in the conduct of monetary policy," Working Paper Series 2870, European Central Bank.
    12. Li, Zehao, 2022. "Financial intermediary leverage and monetary policy transmission," European Economic Review, Elsevier, vol. 144(C).
    13. Tihana Skrinjaric, 2022. "Macroeconomic effects of systemic stress: a rolling spillover index approach," Public Sector Economics, Institute of Public Finance, vol. 46(1), pages 109-140.
    14. Eric Ghysels & Leonardo Iania & Jonas Striaukas, 2018. "Quantile-based Inflation Risk Models," Working Paper Research 349, National Bank of Belgium.
    15. Aikman, David & Bridges, Jonathan & Hacioglu Hoke, Sinem & O’Neill, Cian & Raja, Akash, 2019. "Credit, capital and crises: a GDP-at-Risk approach," Bank of England working papers 824, Bank of England, revised 18 Oct 2019.
    16. Azizpour, S & Giesecke, K. & Schwenkler, G., 2018. "Exploring the sources of default clustering," Journal of Financial Economics, Elsevier, vol. 129(1), pages 154-183.
    17. Leonardo Melosi & Francesco Zanetti, 2022. "The Signaling Effects of Fiscal Announcements," Working Paper Series WP 2022-38, Federal Reserve Bank of Chicago.
    18. Michael D. Bauer & Eric T. Swanson, 2023. "A Reassessment of Monetary Policy Surprises and High-Frequency Identification," NBER Macroeconomics Annual, University of Chicago Press, vol. 37(1), pages 87-155.
    19. Nicholas Apergis, 2023. "Forecasting energy prices: Quantile‐based risk models," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 17-33, January.
    20. Jonas E. Arias & Jesús Fernández-Villaverde & Juan F. Rubio-Ramirez & Minchul Shin, 2021. "Bayesian Estimation of Epidemiological Models: Methods, Causality, and Policy Trade-Offs," Working Papers 21-18, Federal Reserve Bank of Philadelphia.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.04431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.