IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2410.02798.html
   My bibliography  Save this paper

Joint multifractality in the cross-correlations between grains \& oilseeds indices and external uncertainties

Author

Listed:
  • Ying-Hui Shao
  • Xing-Lu Gao
  • Yan-Hong Yang
  • Wei-Xing Zhou

Abstract

This study investigates the relationships between agricultural spot markets and external uncertainties via the multifractal detrending moving-average cross-correlation analysis (MF-X-DMA). The dataset contains the Grains \& Oilseeds Index (GOI) and its five sub-indices of wheat, maize, soyabeans, rice, and barley. Moreover, we use three uncertainty proxies, namely, economic policy uncertainty (EPU), geopolitical risk (GPR), and volatility Index (VIX). We observe the presence of multifractal cross-correlations between agricultural markets and uncertainties. Further, statistical tests show that maize has intrinsic joint multifractality with all the uncertainty proxies, exhibiting a high degree of sensitivity. Additionally, intrinsic multifractality among GOI-GPR, wheat-GPR and soyabeans-VIX is illustrated. However, other series have apparent multifractal cross-correlations with high possibilities. Moreover, our analysis suggests that among the three kinds of external uncertainties, geopolitical risk has a relatively stronger association with grain prices.

Suggested Citation

  • Ying-Hui Shao & Xing-Lu Gao & Yan-Hong Yang & Wei-Xing Zhou, 2024. "Joint multifractality in the cross-correlations between grains \& oilseeds indices and external uncertainties," Papers 2410.02798, arXiv.org.
  • Handle: RePEc:arx:papers:2410.02798
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2410.02798
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Dario Caldara & Matteo Iacoviello, 2022. "Measuring Geopolitical Risk," American Economic Review, American Economic Association, vol. 112(4), pages 1194-1225, April.
    2. Joëts, Marc & Mignon, Valérie & Razafindrabe, Tovonony, 2017. "Does the volatility of commodity prices reflect macroeconomic uncertainty?," Energy Economics, Elsevier, vol. 68(C), pages 313-326.
    3. Saâdaoui, Foued & Ben Jabeur, Sami & Goodell, John W., 2022. "Causality of geopolitical risk on food prices: Considering the Russo–Ukrainian conflict," Finance Research Letters, Elsevier, vol. 49(C).
    4. Huang, Jianbai & Li, Yingli & Zhang, Hongwei & Chen, Jinyu, 2021. "The effects of uncertainty measures on commodity prices from a time-varying perspective," International Review of Economics & Finance, Elsevier, vol. 71(C), pages 100-114.
    5. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    6. Bakas, Dimitrios & Triantafyllou, Athanasios, 2018. "The impact of uncertainty shocks on the volatility of commodity prices," Journal of International Money and Finance, Elsevier, vol. 87(C), pages 96-111.
    7. Emrah Oral & Gazanfer Unal, 2019. "Modeling and forecasting time series of precious metals: a new approach to multifractal data," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-28, December.
    8. Wen-Jie Xie & Zhi-Qiang Jiang & Gao-Feng Gu & Xiong Xiong & Wei-Xing Zhou, 2015. "Joint multifractal analysis based on the partition function approach: Analytical analysis, numerical simulation and empirical application," Papers 1509.05952, arXiv.org.
    9. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    10. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    11. Libo Yin & Liyan Han, 2014. "Macroeconomic uncertainty: does it matter for commodity prices?," Applied Economics Letters, Taylor & Francis Journals, vol. 21(10), pages 711-716, July.
    12. Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "How does economic policy uncertainty comove with stock markets: New evidence from symmetric thermal optimal path method," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 604(C).
    13. Liu, Zhicao & Ye, Yong & Ma, Feng & Liu, Jing, 2017. "Can economic policy uncertainty help to forecast the volatility: A multifractal perspective," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 482(C), pages 181-188.
    14. Ma, Yan-Ran & Ji, Qiang & Wu, Fei & Pan, Jiaofeng, 2021. "Financialization, idiosyncratic information and commodity co-movements," Energy Economics, Elsevier, vol. 94(C).
    15. Jaros{l}aw Kwapie'n & Pawel Blasiak & Stanis{l}aw Dro.zd.z & Pawe{l} O'swik{e}cimka, 2022. "Genuine multifractality in time series is due to temporal correlations," Papers 2211.00728, arXiv.org, revised Mar 2023.
    16. Jiang, Yonghong & Ao, Zhiming & Mo, Bin, 2023. "The risk spillover between China’s economic policy uncertainty and commodity markets: Evidence from frequency spillover and quantile connectedness approaches," The North American Journal of Economics and Finance, Elsevier, vol. 66(C).
    17. Zhu, Bo & Lin, Renda & Deng, Yuanyue & Chen, Pingshe & Chevallier, Julien, 2021. "Intersectoral systemic risk spillovers between energy and agriculture under the financial and COVID-19 crises," Economic Modelling, Elsevier, vol. 105(C).
    18. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
    19. Badshah, Ihsan & Demirer, Riza & Suleman, Muhammad Tahir, 2019. "The effect of economic policy uncertainty on stock-commodity correlations and its implications on optimal hedging," Energy Economics, Elsevier, vol. 84(C).
    20. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    21. John Hua Fan & Sebastian Binnewies & Sanuri De Silva, 2023. "Wisdom of crowds and commodity pricing," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 43(8), pages 1040-1068, August.
    22. Babak Fazelabdolabadi, 2019. "Uncertainty and energy-sector equity returns in Iran: a Bayesian and quasi-Monte Carlo time-varying analysis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 5(1), pages 1-20, December.
    23. Pawe{l} O'swic{e}cimka & Stanis{l}aw Dro.zd.z & Marcin Forczek & Stanis{l}aw Jadach & Jaros{l}aw Kwapie'n, 2013. "Detrended Cross-Correlation Analysis Consistently Extended to Multifractality," Papers 1308.6148, arXiv.org, revised Feb 2014.
    24. Deniz Erer & Elif Erer & Selim Güngör, 2023. "The aggregate and sectoral time-varying market efficiency during crisis periods in Turkey: a comparative analysis with COVID-19 outbreak and the global financial crisis," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 9(1), pages 1-25, December.
    25. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    2. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    3. Ruan, Qingsong & Zhang, Manqian & Lv, Dayong & Yang, Haiquan, 2018. "SAD and stock returns revisited: Nonlinear analysis based on MF-DCCA and Granger test," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 509(C), pages 1009-1022.
    4. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    5. Yao, Can-Zhong & Lin, Ji-Nan & Zheng, Xu-Zhou, 2017. "Coupling detrended fluctuation analysis for multiple warehouse-out behavioral sequences," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 465(C), pages 75-90.
    6. Li, Houjian & Li, Yanjiao & Guo, Lili, 2023. "Extreme risk spillover effect and dynamic linkages between uncertainty and commodity markets: A comparison between China and America," Resources Policy, Elsevier, vol. 85(PA).
    7. Hedi Ben Haddad & Imed Mezghani & Abdessalem Gouider, 2021. "The Dynamic Spillover Effects of Macroeconomic and Financial Uncertainty on Commodity Markets Uncertainties," Economies, MDPI, vol. 9(2), pages 1-22, June.
    8. Ruan, Qingsong & Yang, Haiquan & Lv, Dayong & Zhang, Shuhua, 2018. "Cross-correlations between individual investor sentiment and Chinese stock market return: New perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 243-256.
    9. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    10. Raza, Syed Ali & Masood, Amna & Benkraiem, Ramzi & Urom, Christian, 2023. "Forecasting the volatility of precious metals prices with global economic policy uncertainty in pre and during the COVID-19 period: Novel evidence from the GARCH-MIDAS approach," Energy Economics, Elsevier, vol. 120(C).
    11. Ruan, Qingsong & Bao, Junjie & Zhang, Manqian & Fan, Limin, 2019. "The effects of exchange rate regime reform on RMB markets: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 522(C), pages 122-134.
    12. Manimaran, P. & Narayana, A.C., 2018. "Multifractal detrended cross-correlation analysis on air pollutants of University of Hyderabad Campus, India," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 502(C), pages 228-235.
    13. Aslam, Faheem & Zil-e-huma, & Bibi, Rashida & Ferreira, Paulo, 2022. "Cross-correlations between economic policy uncertainty and precious and industrial metals: A multifractal cross-correlation analysis," Resources Policy, Elsevier, vol. 75(C).
    14. Yao, Can-Zhong & Liu, Cheng & Ju, Wei-Jia, 2020. "Multifractal analysis of the WTI crude oil market, US stock market and EPU," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    15. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    16. Faheem Aslam & Paulo Ferreira & Haider Ali & Ana Ercília José, 2022. "Application of Multifractal Analysis in Estimating the Reaction of Energy Markets to Geopolitical Acts and Threats," Sustainability, MDPI, vol. 14(10), pages 1-23, May.
    17. Li, Tingyi & Xue, Leyang & Chen, Yu & Chen, Feier & Miao, Yuqi & Shao, Xinzeng & Zhang, Chenyi, 2018. "Insights from multifractality analysis of tanker freight market volatility with common external factor of crude oil price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 505(C), pages 374-384.
    18. Zhou, Weijie & Dang, Yaoguo & Gu, Rongbao, 2013. "Efficiency and multifractality analysis of CSI 300 based on multifractal detrending moving average algorithm," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(6), pages 1429-1438.
    19. Cao, Guangxi & Han, Yan & Li, Qingchen & Xu, Wei, 2017. "Asymmetric MF-DCCA method based on risk conduction and its application in the Chinese and foreign stock markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 468(C), pages 119-130.
    20. Aslam, Faheem & Hunjra, Ahmed Imran & Memon, Bilal Ahmed & Zhang, Mingda, 2024. "Interplay of multifractal dynamics between shadow policy rates and energy markets," The North American Journal of Economics and Finance, Elsevier, vol. 71(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2410.02798. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.