IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2211.00728.html
   My bibliography  Save this paper

Genuine multifractality in time series is due to temporal correlations

Author

Listed:
  • Jaros{l}aw Kwapie'n
  • Pawel Blasiak
  • Stanis{l}aw Dro.zd.z
  • Pawe{l} O'swik{e}cimka

Abstract

Based on the mathematical arguments formulated within the Multifractal Detrended Fluctuation Analysis (MFDFA) approach it is shown that in the uncorrelated time series from the Gaussian basin of attraction the effects resembling multifractality asymptotically disappear for positive moments when the length of time series increases. A hint is given that this applies to the negative moments as well and extends to the L\'evy stable regime of fluctuations. The related effects are also illustrated and confirmed by numerical simulations. This documents that the genuine multifractality in time series may only result from the long-range temporal correlations and the fatter distribution tails of fluctuations may broaden the width of singularity spectrum only when such correlations are present. The frequently asked question of what makes multifractality in time series - temporal correlations or broad distribution tails - is thus ill posed. In the absence of correlations only the bifractal or monofractal cases are possible. The former corresponds to the L\'evy stable regime of fluctuations while the latter to the ones belonging to the Gaussian basin of attraction in the sense of the Central Limit Theorem.

Suggested Citation

  • Jaros{l}aw Kwapie'n & Pawel Blasiak & Stanis{l}aw Dro.zd.z & Pawe{l} O'swik{e}cimka, 2022. "Genuine multifractality in time series is due to temporal correlations," Papers 2211.00728, arXiv.org, revised Mar 2023.
  • Handle: RePEc:arx:papers:2211.00728
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2211.00728
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    2. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    3. Meo, Marcos M. & Iaconis, Francisco R. & Del Punta, Jessica A. & Delrieux, Claudio A. & Gasaneo, Gustavo, 2024. "Multifractal information on reading eye tracking data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 638(C).
    4. Liu, Yang & Zhuo, Xuru & Zhou, Xiaozhu, 2024. "Multifractal analysis of Chinese literary and web novels," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    5. Stanis{l}aw Dro.zd.z & Jaros{l}aw Kwapie'n & Marcin Wk{a}torek, 2023. "What is mature and what is still emerging in the cryptocurrency market?," Papers 2305.05751, arXiv.org.
    6. Sahoo, Sushanta Kumar & Katlamudi, Madhusudhanarao & Pedapudi, Chandra Sekhar, 2024. "Multifractal detrended fluctuation analysis of soil radon in the Kachchh Region of Gujarat, India: A case study of earthquake precursors," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    7. Wang, Fang & Han, Guosheng, 2023. "Coupling correlation adaptive detrended analysis for multiple nonstationary series," Chaos, Solitons & Fractals, Elsevier, vol. 177(C).
    8. Kelty-Stephen, Damian G. & Mangalam, Madhur, 2024. "Additivity suppresses multifractal nonlinearity due to multiplicative cascade dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
    9. Vogl, Markus & Kojić, Milena & Mitić, Petar, 2024. "Dynamics of green and conventional bond markets: Evidence from the generalized chaos analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 633(C).
    10. Ying-Hui Shao & Xing-Lu Gao & Yan-Hong Yang & Wei-Xing Zhou, 2024. "Joint multifractality in the cross-correlations between grains \& oilseeds indices and external uncertainties," Papers 2410.02798, arXiv.org.
    11. Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2211.00728. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.