IDEAS home Printed from https://ideas.repec.org/a/eee/phsmap/v637y2024ics0378437124000979.html
   My bibliography  Save this article

Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations

Author

Listed:
  • Kristjanpoller, Werner
  • Nekhili, Ramzi
  • Bouri, Elie

Abstract

Blockchain exchange-traded funds (ETFs) are nascent products in the financial industry. A limited literature focuses on the multifractal analysis of some conventional ETFs, but the multifractal behaviour of the blockchain ETF market has not been studied. In this paper, we investigate the multifractal and asymmetric cross-correlation features between blockchain ETFs and the cryptocurrency and Nasdaq markets. Multifractality exists in the cross-correlations between blockchain ETFs and the cryptocurrency and Nasdaq markets. There is a higher persistence in the cross-correlation behaviours between blockchain ETFs and cryptocurrencies in the uptrend, whereas the persistence between blockchain ETFs and Nasdaq is more pronounced in the downtrend. On one hand, this suggests that large fluctuations in the cryptocurrency markets lead to large fluctuations in blockchain ETF markets. On the other hand, large fluctuations in the Nasdaq index lead to small fluctuations in blockchain ETF markets. These results reflect stronger ties between blockchain ETFs and cryptocurrencies compared to blockchain ETFs and the Nasdaq index. Such heterogeneous behaviour in the cross-correlation structure provides insights for short-term investment, hedging strategies, and market efficiency. Further analysis shows that long-range cross-correlation and fat-tail distributions are sources of multifractality.

Suggested Citation

  • Kristjanpoller, Werner & Nekhili, Ramzi & Bouri, Elie, 2024. "Blockchain ETFs and the cryptocurrency and Nasdaq markets: Multifractal and asymmetric cross-correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 637(C).
  • Handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000979
    DOI: 10.1016/j.physa.2024.129589
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0378437124000979
    Download Restriction: Full text for ScienceDirect subscribers only. Journal offers the option of making the article available online on Science direct for a fee of $3,000

    File URL: https://libkey.io/10.1016/j.physa.2024.129589?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xi Fu & Eser Arisoy & Mark Shackleton & Mehmet Umutlu, 2016. "Option-Implied Volatility Measures and Stock Return Predictability," Post-Print hal-01484672, HAL.
    2. Kakinaka, Shinji & Umeno, Ken, 2022. "Cryptocurrency market efficiency in short- and long-term horizons during COVID-19: An asymmetric multifractal analysis approach," Finance Research Letters, Elsevier, vol. 46(PA).
    3. Lu, Xinsheng & Sun, Xinxin & Ge, Jintian, 2017. "Dynamic relationship between Japanese Yen exchange rates and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 474(C), pages 144-161.
    4. Mensi, Walid & Sensoy, Ahmet & Vo, Xuan Vinh & Kang, Sang Hoon, 2022. "Pricing efficiency and asymmetric multifractality of major asset classes before and during COVID-19 crisis," The North American Journal of Economics and Finance, Elsevier, vol. 62(C).
    5. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Tetsuya Takaishi, 2017. "Statistical properties and multifractality of Bitcoin," Papers 1707.07618, arXiv.org, revised May 2018.
    7. Elie Bouri & Rangan Gupta & Xuan Vinh Vo, 2022. "Jumps in Geopolitical Risk and the Cryptocurrency Market: The Singularity of Bitcoin," Defence and Peace Economics, Taylor & Francis Journals, vol. 33(2), pages 150-161, February.
    8. Wei-Xing Zhou, 2009. "The components of empirical multifractality in financial returns," Papers 0908.1089, arXiv.org, revised Oct 2009.
    9. Buonocore, R.J. & Aste, T. & Di Matteo, T., 2016. "Measuring multiscaling in financial time-series," Chaos, Solitons & Fractals, Elsevier, vol. 88(C), pages 38-47.
    10. Li, Shuping & Lu, Xinsheng & Liu, Xinghua, 2020. "Dynamic relationship between Chinese RMB exchange rate index and market anxiety: A new perspective based on MF-DCCA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    11. He, Ling-Yun & Chen, Shu-Peng, 2011. "A new approach to quantify power-law cross-correlation and its application to commodity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(21), pages 3806-3814.
    12. Jaros{l}aw Kwapie'n & Pawel Blasiak & Stanis{l}aw Dro.zd.z & Pawe{l} O'swik{e}cimka, 2022. "Genuine multifractality in time series is due to temporal correlations," Papers 2211.00728, arXiv.org, revised Mar 2023.
    13. Alvarez-Ramirez, J. & Rodriguez, E. & Ibarra-Valdez, C., 2018. "Long-range correlations and asymmetry in the Bitcoin market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 492(C), pages 948-955.
    14. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    15. Xu, Fang & Bouri, Elie & Cepni, Oguzhan, 2022. "Blockchain and crypto-exposed US companies and major cryptocurrencies: The role of jumps and co-jumps," Finance Research Letters, Elsevier, vol. 50(C).
    16. Khan, Khalid & Su, Chi-Wei & Khurshid, Adnan & Umar, Muhammad, 2022. "COVID-19 impact on multifractality of energy prices: Asymmetric multifractality analysis," Energy, Elsevier, vol. 256(C).
    17. Afees A. Salisu & Lukman Lasisi & Jean Paul Tchankam, 2022. "Historical geopolitical risk and the behaviour of stock returns in advanced economies," The European Journal of Finance, Taylor & Francis Journals, vol. 28(9), pages 889-906, June.
    18. Elie Bouri & Luis A. Gil‐Alana & Rangan Gupta & David Roubaud, 2019. "Modelling long memory volatility in the Bitcoin market: Evidence of persistence and structural breaks," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 24(1), pages 412-426, January.
    19. Assaf, Ata & Bhandari, Avishek & Charif, Husni & Demir, Ender, 2022. "Multivariate long memory structure in the cryptocurrency market: The impact of COVID-19," International Review of Financial Analysis, Elsevier, vol. 82(C).
    20. Pawe{l} O'swik{e}cimka & Stanis{l}aw Dro.zd.z & Mattia Frasca & Robert Gk{e}barowski & Natsue Yoshimura & Luciano Zunino & Ludovico Minati, 2020. "Wavelet-based discrimination of isolated singularities masquerading as multifractals in detrended fluctuation analyses," Papers 2004.03319, arXiv.org.
    21. Zhou, Wei-Xing, 2012. "Finite-size effect and the components of multifractality in financial volatility," Chaos, Solitons & Fractals, Elsevier, vol. 45(2), pages 147-155.
    22. Arouxet, M. Belén & Bariviera, Aurelio F. & Pastor, Verónica E. & Vampa, Victoria, 2022. "Covid-19 impact on cryptocurrencies: Evidence from a wavelet-based Hurst exponent," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
    23. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    24. Lahmiri, Salim & Bekiros, Stelios, 2018. "Chaos, randomness and multi-fractality in Bitcoin market," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 28-34.
    25. Long, Huaigang & Demir, Ender & Będowska-Sójka, Barbara & Zaremba, Adam & Shahzad, Syed Jawad Hussain, 2022. "Is geopolitical risk priced in the cross-section of cryptocurrency returns?," Finance Research Letters, Elsevier, vol. 49(C).
    26. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    27. Bouri, Elie & Jalkh, Naji, 2023. "Spillovers of joint volatility-skewness-kurtosis of major cryptocurrencies and their determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    28. Zhou, Yu & Chen, Shi, 2016. "Cross-correlation analysis between Chinese TF contracts and treasury ETF based on high-frequency data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 443(C), pages 117-127.
    29. Stanislaw Drozdz & Jaroslaw Kwapien & Pawel Oswiecimka & Rafal Rak, 2009. "Quantitative features of multifractal subtleties in time series," Papers 0907.2866, arXiv.org, revised Feb 2010.
    30. Fernandes, Leonardo H.S. & Silva, José W.L. & de Araujo, Fernando H.A. & Tabak, Benjamin M., 2023. "Multifractal cross-correlations between green bonds and financial assets," Finance Research Letters, Elsevier, vol. 53(C).
    31. Aslam, Faheem & Memon, Bilal Ahmed & Hunjra, Ahmed Imran & Bouri, Elie, 2023. "The dynamics of market efficiency of major cryptocurrencies," Global Finance Journal, Elsevier, vol. 58(C).
    32. Gao, Xing-Lu & Shao, Ying-Hui & Yang, Yan-Hong & Zhou, Wei-Xing, 2022. "Do the global grain spot markets exhibit multifractal nature?," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    33. Tiwari, Aviral Kumar & Albulescu, Claudiu Tiberiu & Yoon, Seong-Min, 2017. "A multifractal detrended fluctuation analysis of financial market efficiency: Comparison using Dow Jones sector ETF indices," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 483(C), pages 182-192.
    34. Zhang, Chen & Ni, Zhiwei & Ni, Liping & Li, Jingming & Zhou, Longfei, 2016. "Asymmetric multifractal detrending moving average analysis in time series of PM2.5 concentration," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 457(C), pages 322-330.
    35. Shahzad, Syed Jawad Hussain & Bouri, Elie & Kayani, Ghulam Mujtaba & Nasir, Rana Muhammad & Kristoufek, Ladislav, 2020. "Are clean energy stocks efficient? Asymmetric multifractal scaling behaviour," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 550(C).
    36. B. Podobnik & I. Grosse & D. Horvatić & S. Ilic & P. Ch. Ivanov & H. E. Stanley, 2009. "Quantifying cross-correlations using local and global detrending approaches," The European Physical Journal B: Condensed Matter and Complex Systems, Springer;EDP Sciences, vol. 71(2), pages 243-250, September.
    37. Naeem, Muhammad Abubakr & Bouri, Elie & Peng, Zhe & Shahzad, Syed Jawad Hussain & Vo, Xuan Vinh, 2021. "Asymmetric efficiency of cryptocurrencies during COVID19," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 565(C).
    38. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    39. Zhu, Xiaoyu & Bao, Si, 2019. "Multifractality, efficiency and cross-correlations analysis of the American ETF market: Evidence from SPY, DIA and QQQ," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 533(C).
    40. Juan Luis Lopez & Jesus Guillermo Contreras, 2013. "Performance of multifractal detrended fluctuation analysis on short time series," Papers 1311.2278, arXiv.org.
    41. Gajardo, Gabriel & Kristjanpoller, Werner D. & Minutolo, Marcel, 2018. "Does Bitcoin exhibit the same asymmetric multifractal cross-correlations with crude oil, gold and DJIA as the Euro, Great British Pound and Yen?," Chaos, Solitons & Fractals, Elsevier, vol. 109(C), pages 195-205.
    42. Charfeddine, Lanouar & Maouchi, Youcef, 2019. "Are shocks on the returns and volatility of cryptocurrencies really persistent?," Finance Research Letters, Elsevier, vol. 28(C), pages 423-430.
    43. Wei-Xing Zhou, 2008. "Multifractal detrended cross-correlation analysis for two nonstationary signals," Papers 0803.2773, arXiv.org.
    44. Cao, Guangxi & Cao, Jie & Xu, Longbing & He, LingYun, 2014. "Detrended cross-correlation analysis approach for assessing asymmetric multifractal detrended cross-correlations and their application to the Chinese financial market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 393(C), pages 460-469.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liao, Xin & Li, Qin & Chan, Stephen & Chu, Jeffrey & Zhang, Yuanyuan, 2024. "Interconnections and contagion among cryptocurrencies, DeFi, NFT and traditional financial assets: Some new evidence from tail risk driven network," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 647(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kristjanpoller, Werner & Bouri, Elie & Takaishi, Tetsuya, 2020. "Cryptocurrencies and equity funds: Evidence from an asymmetric multifractal analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    2. Kakinaka, Shinji & Umeno, Ken, 2021. "Exploring asymmetric multifractal cross-correlations of price–volatility and asymmetric volatility dynamics in cryptocurrency markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 581(C).
    3. Shen, Na & Chen, Jiayi, 2023. "Asymmetric multifractal spectrum distribution based on detrending moving average cross-correlation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 615(C).
    4. Nikolaos A. Kyriazis, 2019. "A Survey on Efficiency and Profitable Trading Opportunities in Cryptocurrency Markets," JRFM, MDPI, vol. 12(2), pages 1-17, April.
    5. Lee, Min-Jae & Choi, Sun-Yong, 2024. "Insights into the dynamics of market efficiency spillover of financial assets in different equity markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 641(C).
    6. Kristjanpoller, Werner & Bouri, Elie, 2019. "Asymmetric multifractal cross-correlations between the main world currencies and the main cryptocurrencies," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 523(C), pages 1057-1071.
    7. Kristjanpoller, Werner & Minutolo, Marcel C., 2021. "Asymmetric multi-fractal cross-correlations of the price of electricity in the US with crude oil and the natural gas," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 572(C).
    8. Chowdhury, Mohammad Ashraful Ferdous & Abdullah, Mohammad & Alam, Masud & Abedin, Mohammad Zoynul & Shi, Baofeng, 2023. "NFTs, DeFi, and other assets efficiency and volatility dynamics: An asymmetric multifractality analysis," International Review of Financial Analysis, Elsevier, vol. 87(C).
    9. Cao, Guangxi & Xu, Wei, 2016. "Nonlinear structure analysis of carbon and energy markets with MFDCCA based on maximum overlap wavelet transform," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 444(C), pages 505-523.
    10. Zhang, Xin & Zhu, Yingming & Yang, Liansheng, 2018. "Multifractal detrended cross-correlations between Chinese stock market and three stock markets in The Belt and Road Initiative," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 503(C), pages 105-115.
    11. Li Wang & Xing-Lu Gao & Wei-Xing Zhou, 2023. "Testing For Intrinsic Multifractality In The Global Grain Spot Market Indices: A Multifractal Detrended Fluctuation Analysis," FRACTALS (fractals), World Scientific Publishing Co. Pte. Ltd., vol. 31(07), pages 1-24.
    12. Telli, Şahin & Chen, Hongzhuan, 2021. "Multifractal behavior relationship between crypto markets and Wikipedia-Reddit online platforms," Chaos, Solitons & Fractals, Elsevier, vol. 152(C).
    13. Li, Shuping & Li, Jianfeng & Lu, Xinsheng & Sun, Yihong, 2022. "Exploring the dynamic nonlinear relationship between crude oil price and implied volatility indices: A new perspective from MMV-MFDFA," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 603(C).
    14. Yao, Can-Zhong & Mo, Yi-Na & Zhang, Ze-Kun, 2021. "A study of the efficiency of the Chinese clean energy stock market and its correlation with the crude oil market based on an asymmetric multifractal scaling behavior analysis," The North American Journal of Economics and Finance, Elsevier, vol. 58(C).
    15. Alaoui, Marwane El & Bouri, Elie & Roubaud, David, 2019. "Bitcoin price–volume: A multifractal cross-correlation approach," Finance Research Letters, Elsevier, vol. 31(C).
    16. Ji, Qiangbiao & Zhang, Xin & Zhu, Yingming, 2020. "Multifractal analysis of the impact of US–China trade friction on US and China soy futures markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 542(C).
    17. Fernández-Martínez, M. & Sánchez-Granero, M.A. & Casado Belmonte, M.P. & Trinidad Segovia, J.E., 2020. "A note on power-law cross-correlated processes," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    18. Cao, Guangxi & Xu, Longbing & Cao, Jie, 2012. "Multifractal detrended cross-correlations between the Chinese exchange market and stock market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 391(20), pages 4855-4866.
    19. Ying-Hui Shao & Xing-Lu Gao & Yan-Hong Yang & Wei-Xing Zhou, 2025. "Joint multifractality in cross-correlations between grains & oilseeds indices and external uncertainties," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 11(1), pages 1-32, December.
    20. Choi, Sun-Yong, 2021. "Analysis of stock market efficiency during crisis periods in the US stock market: Differences between the global financial crisis and COVID-19 pandemic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 574(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:phsmap:v:637:y:2024:i:c:s0378437124000979. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/physica-a-statistical-mechpplications/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.