IDEAS home Printed from https://ideas.repec.org/p/pav/demwpp/demwp0139.html
   My bibliography  Save this paper

Assessing News Contagion in Finance

Author

Listed:
  • Paola Cerchiello

    (Department of Economics and Management, University of Pavia)

  • Giancarlo Nicola

    (Department of Economics and Management, University of Pavia)

Abstract

The analysis of news data in the financial context has gained a prominent interest in the last years. This because of the possible predictive power of such content especially in terms of associated sentiment/mood. In this paper we focus on a specific aspect of financial news analysis: how the covered topics modify according to space and time dimensions. To this purpose, we employ a modified version of topic model LDA, the so called Structural Topic Model (STM), that takes into account covariates as well. Our aim is to study the possible evolution of topics extracted from two well known news archive - Reuters and Bloomberg - and to investigate a causal effect in the diffusion of the news by means of a Granger causality test. Our results show that both the temporal dynamics and the spatial differentiation matter in the news contagion.

Suggested Citation

  • Paola Cerchiello & Giancarlo Nicola, 2017. "Assessing News Contagion in Finance," DEM Working Papers Series 139, University of Pavia, Department of Economics and Management.
  • Handle: RePEc:pav:demwpp:demwp0139
    as

    Download full text from publisher

    File URL: http://dem-web.unipv.it/web/docs/dipeco/quad/ps/RePEc/pav/demwpp/DEMWP0139.pdf
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    2. Paola Cerchiello & Paolo Giudici, 2014. "How to measure the quality of financial tweets," DEM Working Papers Series 069, University of Pavia, Department of Economics and Management.
    3. Gabriele Ranco & Darko Aleksovski & Guido Caldarelli & Miha Grčar & Igor Mozetič, 2015. "The Effects of Twitter Sentiment on Stock Price Returns," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-21, September.
    4. Pekka Malo & Ankur Sinha & Pekka Korhonen & Jyrki Wallenius & Pyry Takala, 2014. "Good debt or bad debt: Detecting semantic orientations in economic texts," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 65(4), pages 782-796, April.
    5. Granger, C W J, 1969. "Investigating Causal Relations by Econometric Models and Cross-Spectral Methods," Econometrica, Econometric Society, vol. 37(3), pages 424-438, July.
    6. Sims, Christopher A, 1972. "Money, Income, and Causality," American Economic Review, American Economic Association, vol. 62(4), pages 540-552, September.
    7. Scott Deerwester & Susan T. Dumais & George W. Furnas & Thomas K. Landauer & Richard Harshman, 1990. "Indexing by latent semantic analysis," Journal of the American Society for Information Science, Association for Information Science & Technology, vol. 41(6), pages 391-407, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Scaramozzino, Roberta & Cerchiello, Paola & Aste, Tomaso, 2021. "Information theoretic causality detection between financial and sentiment data," LSE Research Online Documents on Economics 110903, London School of Economics and Political Science, LSE Library.
    2. Nicola, Giancarlo & Cerchiello, Paola & Aste, Tomaso, 2020. "Information network modeling for U.S. banking systemic risk," LSE Research Online Documents on Economics 107563, London School of Economics and Political Science, LSE Library.
    3. Sturm, Silke, 2019. "Political Competition: How to Measure Party Strategy in Direct Voter Communication using Social Media Data?," Hamburg Discussion Papers in International Economics 1, University of Hamburg, Department of Economics.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Paola Cerchiello & Giancarlo Nicola, 2018. "Assessing News Contagion in Finance," Econometrics, MDPI, vol. 6(1), pages 1-19, February.
    2. KAMKOUM, Arnaud Cedric, 2023. "The Federal Reserve’s Response to the Global Financial Crisis and its Effects: An Interrupted Time-Series Analysis of the Impact of its Quantitative Easing Programs," Thesis Commons d7pvg, Center for Open Science.
    3. Zamani, Mehrzad, 2007. "Energy consumption and economic activities in Iran," Energy Economics, Elsevier, vol. 29(6), pages 1135-1140, November.
    4. Alberto Fuertes & Simón Sosvilla-Rivero, 2019. "“Forecasting emerging market currencies: Are inflation expectations useful?”," IREA Working Papers 201918, University of Barcelona, Research Institute of Applied Economics, revised Oct 2019.
    5. Gossé, Jean-Baptiste & Guillaumin, Cyriac, 2013. "L’apport de la représentation VAR de Christopher A. Sims à la science économique," L'Actualité Economique, Société Canadienne de Science Economique, vol. 89(4), pages 309-319, Décembre.
    6. Kathryn M. Dominguez, 1991. "Do Exchange Auctions Work? An Examination of the Bolivian Experience," NBER Working Papers 3683, National Bureau of Economic Research, Inc.
    7. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    8. Nishiyama, Yoshihiko & Hitomi, Kohtaro & Kawasaki, Yoshinori & Jeong, Kiho, 2011. "A consistent nonparametric test for nonlinear causality—Specification in time series regression," Journal of Econometrics, Elsevier, vol. 165(1), pages 112-127.
    9. Bashiri Behmiri, Niaz & Pires Manso, José R., 2012. "Does Portuguese economy support crude oil conservation hypothesis?," Energy Policy, Elsevier, vol. 45(C), pages 628-634.
    10. Nour Wehbe & Bassam Assaf & Salem Darwich, 2018. "Étude de causalité entre la consommation d’électricité et la croissance économique au Liban," Post-Print hal-01944291, HAL.
    11. Nidhal Mgadmi & Houssem Rachdi & Hichem Saidi & Khaled Guesmi, 2019. "On the Instability of Tunisian Money Demand: Some Empirical Issues with Structural Breaks," Journal of Quantitative Economics, Springer;The Indian Econometric Society (TIES), vol. 17(1), pages 153-165, March.
    12. Panayiotis C. Afxentiou & Apostolos Serletis, 1991. "A Time-Series Analysis of the Relationship Between Government Expenditure and Gdp in Canada," Public Finance Review, , vol. 19(3), pages 316-333, July.
    13. Zapata, Hector O. & Gil, Jose M., 1999. "Cointegration and causality in international agricultural economics research," Agricultural Economics, Blackwell, vol. 20(1), pages 1-9, January.
    14. Bernd Hayo, 1999. "Money-output Granger causality revisited: an empirical analysis of EU countries," Applied Economics, Taylor & Francis Journals, vol. 31(11), pages 1489-1501.
    15. Andersson, Björn, 1999. "On the Causality Between Saving and Growth: Long- and Short-Run Dynamics and Country Heterogeneity," Working Paper Series 1999:18, Uppsala University, Department of Economics.
    16. Tomasz Woźniak, 2016. "Bayesian Vector Autoregressions," Australian Economic Review, The University of Melbourne, Melbourne Institute of Applied Economic and Social Research, vol. 49(3), pages 365-380, September.
    17. James J. Heckman, 2008. "Econometric Causality," International Statistical Review, International Statistical Institute, vol. 76(1), pages 1-27, April.
    18. Paul A. Anderson, 1979. "A test of the exogeneity of national variables in a regional econometric model," Working Papers 124, Federal Reserve Bank of Minneapolis.
    19. Dawson, John W., 2003. "Causality in the freedom-growth relationship," European Journal of Political Economy, Elsevier, vol. 19(3), pages 479-495, September.
    20. John Geweke & Joel Horowitz & M. Hashem Pesaran, 2006. "Econometrics: A Bird’s Eye View," CESifo Working Paper Series 1870, CESifo.

    More about this item

    Keywords

    behavioural finance; financial news; structural topic model; Granger causality.;
    All these keywords.

    JEL classification:

    • C83 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Survey Methods; Sampling Methods
    • C12 - Mathematical and Quantitative Methods - - Econometric and Statistical Methods and Methodology: General - - - Hypothesis Testing: General
    • E58 - Macroeconomics and Monetary Economics - - Monetary Policy, Central Banking, and the Supply of Money and Credit - - - Central Banks and Their Policies
    • E61 - Macroeconomics and Monetary Economics - - Macroeconomic Policy, Macroeconomic Aspects of Public Finance, and General Outlook - - - Policy Objectives; Policy Designs and Consistency; Policy Coordination
    • G02 - Financial Economics - - General - - - Behavioral Finance: Underlying Principles
    • G14 - Financial Economics - - General Financial Markets - - - Information and Market Efficiency; Event Studies; Insider Trading

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:pav:demwpp:demwp0139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Alice Albonico (email available below). General contact details of provider: https://edirc.repec.org/data/dppavit.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.