IDEAS home Printed from https://ideas.repec.org/a/taf/gnstxx/v24y2012i3p647-663.html
   My bibliography  Save this article

Local modal regression

Author

Listed:
  • Weixin Yao
  • Bruce Lindsay
  • Runze Li

Abstract

A local modal estimation procedure is proposed for the regression function in a nonparametric regression model. A distinguishing characteristic of the proposed procedure is that it introduces an additional tuning parameter that is automatically selected using the observed data in order to achieve both robustness and efficiency of the resulting estimate. We demonstrate both theoretically and empirically that the resulting estimator is more efficient than the ordinary local polynomial regression (LPR) estimator in the presence of outliers or heavy-tail error distribution (such as t-distribution). Furthermore, we show that the proposed procedure is as asymptotically efficient as the LPR estimator when there are no outliers and the error distribution is a Gaussian distribution. We propose an expectation–maximisation-type algorithm for the proposed estimation procedure. A Monte Carlo simulation study is conducted to examine the finite sample performance of the proposed method. The simulation results confirm the theoretical findings. The proposed methodology is further illustrated via an analysis of a real data example.

Suggested Citation

  • Weixin Yao & Bruce Lindsay & Runze Li, 2012. "Local modal regression," Journal of Nonparametric Statistics, Taylor & Francis Journals, vol. 24(3), pages 647-663.
  • Handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:647-663
    DOI: 10.1080/10485252.2012.678848
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/10485252.2012.678848
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/10485252.2012.678848?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jushan Bai & Pierre Perron, 2003. "Computation and analysis of multiple structural change models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 18(1), pages 1-22.
    2. Goldfeld, Stephen M. & Quandt, Richard E., 1973. "A Markov model for switching regressions," Journal of Econometrics, Elsevier, vol. 1(1), pages 3-15, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Kangning & Li, Shaomin, 2021. "Robust distributed modal regression for massive data," Computational Statistics & Data Analysis, Elsevier, vol. 160(C).
    2. Aman Ullah & Tao Wang & Weixin Yao, 2021. "Modal regression for fixed effects panel data," Empirical Economics, Springer, vol. 60(1), pages 261-308, January.
    3. Yen-Chi Chen, 2017. "Modal Regression using Kernel Density Estimation: a Review," Papers 1710.07004, arXiv.org, revised Dec 2017.
    4. Kangning Wang & Lu Lin, 2019. "Robust and efficient estimator for simultaneous model structure identification and variable selection in generalized partial linear varying coefficient models with longitudinal data," Statistical Papers, Springer, vol. 60(5), pages 1649-1676, October.
    5. Yang, Hu & Guo, Chaohui & Lv, Jing, 2014. "A robust and efficient estimation method for single-index varying-coefficient models," Statistics & Probability Letters, Elsevier, vol. 94(C), pages 119-127.
    6. Ullah, Aman & Wang, Tao & Yao, Weixin, 2023. "Semiparametric partially linear varying coefficient modal regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 1001-1026.
    7. Shaomin Li & Kangning Wang & Yong Xu, 2023. "Robust estimation for nonrandomly distributed data," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 75(3), pages 493-509, June.
    8. Hu Yang & Ning Li & Jing Yang, 2020. "A robust and efficient estimation and variable selection method for partially linear models with large-dimensional covariates," Statistical Papers, Springer, vol. 61(5), pages 1911-1937, October.
    9. Weihua Zhao & Riquan Zhang & Yukun Liu & Jicai Liu, 2015. "Empirical likelihood based modal regression," Statistical Papers, Springer, vol. 56(2), pages 411-430, May.
    10. Yang, Hu & Yang, Jing, 2014. "A robust and efficient estimation and variable selection method for partially linear single-index models," Journal of Multivariate Analysis, Elsevier, vol. 129(C), pages 227-242.
    11. José E. Chacón, 2020. "The Modal Age of Statistics," International Statistical Review, International Statistical Institute, vol. 88(1), pages 122-141, April.
    12. Lv, Jing & Yang, Hu & Guo, Chaohui, 2015. "An efficient and robust variable selection method for longitudinal generalized linear models," Computational Statistics & Data Analysis, Elsevier, vol. 82(C), pages 74-88.
    13. Aman Ullah & Tao Wang & Weixin Yao, 2022. "Nonlinear modal regression for dependent data with application for predicting COVID‐19," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 185(3), pages 1424-1453, July.
    14. Wang, Kangning & Li, Shaomin & Sun, Xiaofei & Lin, Lu, 2019. "Modal regression statistical inference for longitudinal data semivarying coefficient models: Generalized estimating equations, empirical likelihood and variable selection," Computational Statistics & Data Analysis, Elsevier, vol. 133(C), pages 257-276.
    15. Liu, Jicai & Zhang, Riquan & Zhao, Weihua & Lv, Yazhao, 2013. "A robust and efficient estimation method for single index models," Journal of Multivariate Analysis, Elsevier, vol. 122(C), pages 226-238.
    16. Lv, Zhike & Zhu, Huiming & Yu, Keming, 2014. "Robust variable selection for nonlinear models with diverging number of parameters," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 90-97.
    17. Yang, Jing & Yang, Hu, 2016. "A robust penalized estimation for identification in semiparametric additive models," Statistics & Probability Letters, Elsevier, vol. 110(C), pages 268-277.
    18. Yunlu Jiang & Guo-Liang Tian & Yu Fei, 2019. "A robust and efficient estimation method for partially nonlinear models via a new MM algorithm," Statistical Papers, Springer, vol. 60(6), pages 2063-2085, December.
    19. Xuejun Ma & Yue Du & Jingli Wang, 2022. "Model detection and variable selection for mode varying coefficient model," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 31(2), pages 321-341, June.
    20. Zhao, Weihua & Zhang, Riquan & Liu, Jicai & Hu, Hongchang, 2015. "Robust adaptive estimation for semivarying coefficient models," Statistics & Probability Letters, Elsevier, vol. 97(C), pages 132-141.
    21. Yang, Jing & Tian, Guoliang & Lu, Fang & Lu, Xuewen, 2020. "Single-index modal regression via outer product gradients," Computational Statistics & Data Analysis, Elsevier, vol. 144(C).
    22. Zhe Sun & Yundong Tu, 2024. "Factors in Fashion: Factor Analysis towards the Mode," Papers 2409.19287, arXiv.org.
    23. Weihua Zhao & Riquan Zhang & Jicai Liu & Yazhao Lv, 2014. "Robust and efficient variable selection for semiparametric partially linear varying coefficient model based on modal regression," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 66(1), pages 165-191, February.
    24. Han, Zhong-Cheng & Lin, Jin-Guan & Zhao, Yan-Yong, 2020. "Adaptive semiparametric estimation for single index models with jumps," Computational Statistics & Data Analysis, Elsevier, vol. 151(C).
    25. Rekabdarkolaee, Hossein Moradi & Boone, Edward & Wang, Qin, 2017. "Robust estimation and variable selection in sufficient dimension reduction," Computational Statistics & Data Analysis, Elsevier, vol. 108(C), pages 146-157.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Heidari, Hassan & Ebrahimi Torki, Mahyar & Babaei Balderlou, Saharnaz, 2015. "How Do Different Oil Price Shocks Affect the Relationship Between Oil and Stock Markets?," MPRA Paper 80273, University Library of Munich, Germany, revised 24 Dec 2016.
    2. Lumengo Bonga-Bonga & Beatrice Desiree Simo-Kengne, 2018. "Inflation and Output Growth Dynamics in South Africa: Evidence from the Markov Switching Vector Autoregressive Model," Journal of African Business, Taylor & Francis Journals, vol. 19(1), pages 143-154, January.
    3. Fukuda, Kosei, 2009. "Distribution switching in financial time series," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(5), pages 1711-1720.
    4. Bildirici, Melike E. & Gökmenoğlu, Seyit M., 2017. "Environmental pollution, hydropower energy consumption and economic growth: Evidence from G7 countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 68-85.
    5. Willem H. Boshoff & Rossouw van Jaarsveld, 2019. "Recurrent Collusion: Cartel Episodes and Overcharges in the South African Cement Market," Review of Industrial Organization, Springer;The Industrial Organization Society, vol. 54(2), pages 353-380, March.
    6. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2011. "The Japanese economy in crises: A time series segmentation study," Economics Discussion Papers 2011-24, Kiel Institute for the World Economy (IfW Kiel).
    7. Cheong, Siew Ann & Fornia, Robert Paulo & Lee, Gladys Hui Ting & Kok, Jun Liang & Yim, Woei Shyr & Xu, Danny Yuan & Zhang, Yiting, 2012. "The Japanese economy in crises: A time series segmentation study," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 6, pages 1-81.
    8. Zhang, Yiting & Lee, Gladys Hui Ting & Wong, Jian Cheng & Kok, Jun Liang & Prusty, Manamohan & Cheong, Siew Ann, 2011. "Will the US economy recover in 2010? A minimal spanning tree study," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(11), pages 2020-2050.
    9. Bilal Mehmood & Syed Hassan Raza & Mahwish Rana & Huma Sohaib & Muhammad Azhar Khan, 2014. "Triangular Relationship between Energy Consumption, Price Index and National Income in Asian Countries: A Pooled Mean Group Approach in Presence of Structural Breaks," International Journal of Energy Economics and Policy, Econjournals, vol. 4(4), pages 610-620.
    10. Matteo Mogliani, 2010. "Residual-based tests for cointegration and multiple deterministic structural breaks: A Monte Carlo study," Working Papers halshs-00564897, HAL.
    11. Bernard, Jean-Thomas & Idoudi, Nadhem & Khalaf, Lynda & Yelou, Clement, 2007. "Finite sample multivariate structural change tests with application to energy demand models," Journal of Econometrics, Elsevier, vol. 141(2), pages 1219-1244, December.
    12. Nuruddeen Usman & Kodili Nwanneka & Nduka, 2023. "Announcement Effect of COVID-19 on Cryptocurrencies," Asian Economics Letters, Asia-Pacific Applied Economics Association, vol. 3(3), pages 1-4.
    13. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    14. Nemati, Mehdi & Saghaian, Sayed H., 2016. "Dynamics of Price Adjustment in Qualitatively Differentiated Markets in the U.S.: The Case of Organic and Conventional Apples," 2016 Annual Meeting, February 6-9, 2016, San Antonio, Texas 229950, Southern Agricultural Economics Association.
    15. Mina Kim & Deokwoo Nam & Jian Wang & Jason J. Wu, 2013. "International trade price stickiness and exchange rate pass-through in micro data: a case study on U.S.–China trade," Globalization Institute Working Papers 135, Federal Reserve Bank of Dallas.
    16. Olawale Awe O. & Adedayo Adepoju A., 2018. "Modified Recursive Bayesian Algorithm For Estimating Time-Varying Parameters In Dynamic Linear Models," Statistics in Transition New Series, Statistics Poland, vol. 19(2), pages 258-293, June.
    17. Marfatia, Hardik A., 2015. "Monetary policy's time-varying impact on the US bond markets: Role of financial stress and risks," The North American Journal of Economics and Finance, Elsevier, vol. 34(C), pages 103-123.
    18. Vicente Esteve & Manuel Navarro-Ibáñez & María A. Prats, 2013. "The present value model of US stock prices revisited: long-run evidence with structural breaks, 1871-2010," Working Papers 04/13, Instituto Universitario de Análisis Económico y Social.
    19. Kumar, Nikeel Nishkar & Patel, Arvind, 2023. "Nonlinear effect of air travel tourism demand on economic growth in Fiji," Journal of Air Transport Management, Elsevier, vol. 109(C).
    20. Murach, Michael & Wagner, Helmut & Kim, Jungsuk & Park, Donghyun, 2022. "Trajectories to high income: Comparing the growth dynamics in China, South Korea, and Japan with cointegrated VAR models," Structural Change and Economic Dynamics, Elsevier, vol. 62(C), pages 492-511.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:gnstxx:v:24:y:2012:i:3:p:647-663. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/GNST20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.