IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.15320.html
   My bibliography  Save this paper

Global Stock Market Volatility Forecasting Incorporating Dynamic Graphs and All Trading Days

Author

Listed:
  • Zhengyang Chi
  • Junbin Gao
  • Chao Wang

Abstract

This study introduces a global stock market volatility forecasting model that enhances forecasting accuracy and practical utility in real-world financial decision-making by integrating dynamic graph structures and encompassing the union of active trading days of different stock markets. The model employs a spatial-temporal graph neural network (GNN) architecture to capture the volatility spillover effect, where shocks in one market spread to others through the interconnective global economy. By calculating the volatility spillover index to depict the volatility network as graphs, the model effectively mirrors the volatility dynamics for the chosen stock market indices. In the empirical analysis, the proposed model surpasses the benchmark model in all forecasting scenarios and is shown to be sensitive to the underlying volatility interrelationships.

Suggested Citation

  • Zhengyang Chi & Junbin Gao & Chao Wang, 2024. "Global Stock Market Volatility Forecasting Incorporating Dynamic Graphs and All Trading Days," Papers 2409.15320, arXiv.org, revised Sep 2024.
  • Handle: RePEc:arx:papers:2409.15320
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.15320
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.15320. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.