IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2409.09179.html
   My bibliography  Save this paper

Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity

Author

Listed:
  • Mohamed Ben Alaya
  • Ahmed Kebaier
  • Djibril Sarr

Abstract

This paper introduces a novel stochastic model for credit spreads. The stochastic approach leverages the diffusion of default intensities via a CIR++ model and is formulated within a risk-neutral probability space. Our research primarily addresses two gaps in the literature. The first is the lack of credit spread models founded on a stochastic basis that enables continuous modeling, as many existing models rely on factorial assumptions. The second is the limited availability of models that directly yield a term structure of credit spreads. An intermediate result of our model is the provision of a term structure for the prices of defaultable bonds. We present the model alongside an innovative, practical, and conservative calibration approach that minimizes the error between historical and theoretical volatilities of default intensities. We demonstrate the robustness of both the model and its calibration process by comparing its behavior to historical credit spread values. Our findings indicate that the model not only produces realistic credit spread term structure curves but also exhibits consistent diffusion over time. Additionally, the model accurately fits the initial term structure of implied survival probabilities and provides an analytical expression for the credit spread of any given maturity at any future time.

Suggested Citation

  • Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Credit Spreads' Term Structure: Stochastic Modeling with CIR++ Intensity," Papers 2409.09179, arXiv.org.
  • Handle: RePEc:arx:papers:2409.09179
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2409.09179
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Chiarella, Carl & Fanelli, Viviana & Musti, Silvana, 2011. "Modelling the evolution of credit spreads using the Cox process within the HJM framework: A CDS option pricing model," European Journal of Operational Research, Elsevier, vol. 208(2), pages 95-108, January.
    2. Chan, K C, et al, 1992. "An Empirical Comparison of Alternative Models of the Short-Term Interest Rate," Journal of Finance, American Finance Association, vol. 47(3), pages 1209-1227, July.
    3. Madan, Dilip & Unal, Haluk, 2000. "A Two-Factor Hazard Rate Model for Pricing Risky Debt and the Term Structure of Credit Spreads," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 35(1), pages 43-65, March.
    4. Baum, Christopher F. & Schäfer, Dorothea & Stephan, Andreas, 2016. "Credit rating agency downgrades and the Eurozone sovereign debt crises," Journal of Financial Stability, Elsevier, vol. 24(C), pages 117-131.
    5. John Hull & Alan White, 2001. "The General Hull–White Model and Supercalibration," Financial Analysts Journal, Taylor & Francis Journals, vol. 57(6), pages 34-43, November.
    6. Vasicek, Oldrich Alfonso, 1977. "Abstract: An Equilibrium Characterization of the Term Structure," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 12(4), pages 627-627, November.
    7. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    8. Tomasz Bielecki & Monique Jeanblanc & Marek Rutkowski, 2011. "Hedging of a credit default swaption in the CIR default intensity model," Finance and Stochastics, Springer, vol. 15(3), pages 541-572, September.
    9. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    10. Duffie, Darrell & Singleton, Kenneth J, 1999. "Modeling Term Structures of Defaultable Bonds," The Review of Financial Studies, Society for Financial Studies, vol. 12(4), pages 687-720.
    11. Giacometti, Rosella & Teocchi, Mariangela, 2005. "On pricing of credit spread options," European Journal of Operational Research, Elsevier, vol. 163(1), pages 52-64, May.
    12. Davies, Andrew, 2008. "Credit spread determinants: An 85 year perspective," Journal of Financial Markets, Elsevier, vol. 11(2), pages 180-197, May.
    13. Ozge Akinci & Albert Queralto, 2022. "Credit Spreads, Financial Crises, and Macroprudential Policy," American Economic Journal: Macroeconomics, American Economic Association, vol. 14(2), pages 469-507, April.
    14. Harvey Rosenblum & Steven Strongin, 1983. "Interest rate volatility in historical perspective," Economic Perspectives, Federal Reserve Bank of Chicago, vol. 7(Jan), pages 10-19.
    15. Manzoni, Katiuscia, 2002. "Modeling credit spreads: An application to the sterling Eurobond market," International Review of Financial Analysis, Elsevier, vol. 11(2), pages 183-218.
    16. Jonathan H. Wright, 2006. "The yield curve and predicting recessions," Finance and Economics Discussion Series 2006-07, Board of Governors of the Federal Reserve System (U.S.).
    17. Peter Feldhütter & Stephen M Schaefer, 2018. "The Myth of the Credit Spread Puzzle," The Review of Financial Studies, Society for Financial Studies, vol. 31(8), pages 2897-2942.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohamed Ben Alaya & Ahmed Kebaier & Djibril Sarr, 2024. "Financial Stochastic Models Diffusion: From Risk-Neutral to Real-World Measure," Papers 2409.12783, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 1-2011, January-A.
    2. Samuel Chege Maina, 2011. "Credit Risk Modelling in Markovian HJM Term Structure Class of Models with Stochastic Volatility," PhD Thesis, Finance Discipline Group, UTS Business School, University of Technology, Sydney, number 5, July-Dece.
    3. Suresh M. Sundaresan, 2000. "Continuous‐Time Methods in Finance: A Review and an Assessment," Journal of Finance, American Finance Association, vol. 55(4), pages 1569-1622, August.
    4. Kensuke Kato & Nobuhiro Nakamura, 2024. "PDE-Based Bayesian Inference of CEV Dynamics for Credit Risk in Stock Prices," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 31(2), pages 389-421, June.
    5. repec:wyi:journl:002109 is not listed on IDEAS
    6. Jonathan A. Batten & Karren Lee-Hwei Khaw & Martin R. Young, 2014. "Convertible Bond Pricing Models," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 775-803, December.
    7. Chi-Fai Lo & Cho-Hoi Hui, 2016. "Pricing Corporate Bonds With Interest Rates Following Double Square-root Process," Working Papers 112016, Hong Kong Institute for Monetary Research.
    8. Radu Tunaru, 2015. "Model Risk in Financial Markets:From Financial Engineering to Risk Management," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 9524, December.
    9. Davide Radi & Vu Phuong Hoang & Gabriele Torri & Hana Dvořáčková, 2021. "A revised version of the Cathcart & El-Jahel model and its application to CDS market," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(2), pages 669-705, December.
    10. Specht, Leon, 2023. "An Empirical Analysis of European Credit Default Swap Spread Dynamics," Junior Management Science (JUMS), Junior Management Science e. V., vol. 8(1), pages 1-42.
    11. Ramaprasad Bhar, 2010. "Stochastic Filtering with Applications in Finance," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 7736, December.
    12. Kang, Jangkoo & Kim, Hwa-Sung, 2005. "Pricing counterparty default risks: Applications to FRNs and vulnerable options," International Review of Financial Analysis, Elsevier, vol. 14(3), pages 376-392.
    13. Chi-Fai Lo & Cho-Hoi Hui, 2016. "Pricing corporate bonds with interest rates following double square-root process," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 3(03), pages 1-31, September.
    14. Tarik Bazgour & Federico Platania, 2022. "A defaultable bond model with cyclical fluctuations in the spread process," Annals of Operations Research, Springer, vol. 312(2), pages 647-672, May.
    15. João Nunes, 2011. "American options and callable bonds under stochastic interest rates and endogenous bankruptcy," Review of Derivatives Research, Springer, vol. 14(3), pages 283-332, October.
    16. Zhou, Chunsheng, 2001. "The term structure of credit spreads with jump risk," Journal of Banking & Finance, Elsevier, vol. 25(11), pages 2015-2040, November.
    17. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    18. Batten, Jonathan & Hogan, Warren, 2002. "A perspective on credit derivatives," International Review of Financial Analysis, Elsevier, vol. 11(3), pages 251-278.
    19. Duffie, Darrell, 2005. "Credit risk modeling with affine processes," Journal of Banking & Finance, Elsevier, vol. 29(11), pages 2751-2802, November.
    20. Moreno, Manuel & Platania, Federico, 2015. "A cyclical square-root model for the term structure of interest rates," European Journal of Operational Research, Elsevier, vol. 241(1), pages 109-121.
    21. Liu, Jun & Longstaff, Francis A. & Mandell, Ravit E., 2000. "The Market Price of Credit Risk: An Empirical Analysis of Interest Rate Swap Spreads," University of California at Los Angeles, Anderson Graduate School of Management qt0zw4f9w6, Anderson Graduate School of Management, UCLA.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2409.09179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.