IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.09505.html
   My bibliography  Save this paper

Periodic Trading Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor Players

Author

Listed:
  • Yufan Chen
  • Lan Wu
  • Renyuan Xu
  • Ruixun Zhang

Abstract

Motivated by recent empirical findings on the periodic phenomenon of aggregated market volumes in equity markets, we aim to understand the causes and consequences of periodic trading activities through a game-theoretic perspective, examining market interactions among different types of participants. Specifically, we introduce a new mean-field liquidation game involving major and minor traders, where the major trader evaluates her strategy against a periodic targeting strategy while a continuum of minor players trade against her. We establish the existence and uniqueness of an open-loop Nash equilibrium. In addition, we prove an O(1/sqrt N) approximation rate of the mean-field solution to the Nash equilibrium in a major-minor game with N minor players. In equilibrium, minor traders exhibit front-running behaviors in both the periodic and trend components of their strategies, reducing the major trader's profit. Such strategic interactions diminish the strength of periodicity in both overall trading volume and asset prices. Our model rationalizes observed periodic trading activities in the market and offers new insights into market dynamics.

Suggested Citation

  • Yufan Chen & Lan Wu & Renyuan Xu & Ruixun Zhang, 2024. "Periodic Trading Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor Players," Papers 2408.09505, arXiv.org.
  • Handle: RePEc:arx:papers:2408.09505
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.09505
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Christian T. Brownlees & Fabrizio Cipollini & Giampiero M. Gallo, 2011. "Intra-daily Volume Modeling and Prediction for Algorithmic Trading," Journal of Financial Econometrics, Oxford University Press, vol. 9(3), pages 489-518, Summer.
    2. Olivier Féron & Peter Tankov & Laura Tinsi, 2020. "Price Formation and Optimal Trading in Intraday Electricity Markets with a Major Player," Risks, MDPI, vol. 8(4), pages 1-21, December.
    3. �lvaro Cartea & Sebastian Jaimungal, 2015. "Optimal execution with limit and market orders," Quantitative Finance, Taylor & Francis Journals, vol. 15(8), pages 1279-1291, August.
    4. Olivier Guéant & Jiang Pu & Guillaume Royer, 2015. "Accelerated Share Repurchase: Pricing And Execution Strategy," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 1-31.
    5. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    6. David Evangelista & Yuri Thamsten, 2020. "On finite population games of optimal trading," Papers 2004.00790, arXiv.org, revised Feb 2021.
    7. Olivier F'eron & Peter Tankov & Laura Tinsi, 2020. "Price formation and optimal trading in intraday electricity markets with a major player," Papers 2011.07655, arXiv.org.
    8. Xue Cheng & Peng Guo & Tai-ho Wang, 2024. "Optimal Order Execution subject to Reservation Strategies under Execution Risk," Papers 2401.03305, arXiv.org.
    9. Peter Reinhard Hansen & Chan Kim & Wade Kim, 2024. "Periodicity in Cryptocurrency Volatility and Liquidity," Journal of Financial Econometrics, Oxford University Press, vol. 22(1), pages 224-251.
    10. Alexander M. Chinco & Mao Ye, 2017. "Investment-Horizon Spillovers," NBER Working Papers 23650, National Bureau of Economic Research, Inc.
    11. Karpoff, Jonathan M., 1987. "The Relation between Price Changes and Trading Volume: A Survey," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(1), pages 109-126, March.
    12. Horst, Ulrich, 2005. "Stationary equilibria in discounted stochastic games with weakly interacting players," Games and Economic Behavior, Elsevier, vol. 51(1), pages 83-108, April.
    13. Steven L. Heston & Robert A. Korajczyk & Ronnie Sadka, 2010. "Intraday Patterns in the Cross‐section of Stock Returns," Journal of Finance, American Finance Association, vol. 65(4), pages 1369-1407, August.
    14. Wang, Jiang, 1994. "A Model of Competitive Stock Trading Volume," Journal of Political Economy, University of Chicago Press, vol. 102(1), pages 127-168, February.
    15. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    16. Bruce Ian Carlin & Miguel Sousa Lobo & S. Viswanathan, 2007. "Episodic Liquidity Crises: Cooperative and Predatory Trading," Journal of Finance, American Finance Association, vol. 62(5), pages 2235-2274, October.
    17. Xuancheng Huang & Sebastian Jaimungal & Mojtaba Nourian, 2019. "Mean-Field Game Strategies for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(2), pages 153-185, March.
    18. Rama Cont & Alessandro Micheli & Eyal Neuman, 2022. "Fast and Slow Optimal Trading with Exogenous Information," Papers 2210.01901, arXiv.org, revised Jun 2023.
    19. Jain, Prem C. & Joh, Gun-Ho, 1988. "The Dependence between Hourly Prices and Trading Volume," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 23(3), pages 269-283, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    2. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    3. Kashyap, Ravi, 2020. "David vs Goliath (You against the Markets), A dynamic programming approach to separate the impact and timing of trading costs," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    4. David Evangelista & Yuri Thamsten, 2023. "Approximately optimal trade execution strategies under fast mean-reversion," Papers 2307.07024, arXiv.org, revised Aug 2023.
    5. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2022. "Portfolio liquidation games with self‐exciting order flow," Mathematical Finance, Wiley Blackwell, vol. 32(4), pages 1020-1065, October.
    6. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    7. Yan, Tingjin & Chiu, Mei Choi & Wong, Hoi Ying, 2023. "Portfolio liquidation with delayed information," Economic Modelling, Elsevier, vol. 126(C).
    8. Konishi, Hizuru, 2002. "Optimal slice of a VWAP trade," Journal of Financial Markets, Elsevier, vol. 5(2), pages 197-221, April.
    9. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    10. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    11. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    12. Jiang Wang, 2002. "Trading Volume and Asset Prices," Annals of Economics and Finance, Society for AEF, vol. 3(2), pages 299-359, November.
    13. Charles-Albert Lehalle & Eyal Neuman, 2019. "Incorporating signals into optimal trading," Finance and Stochastics, Springer, vol. 23(2), pages 275-311, April.
    14. Dimitri Vayanos & Jiang Wang, 2012. "Market Liquidity -- Theory and Empirical Evidence," NBER Working Papers 18251, National Bureau of Economic Research, Inc.
    15. Lee, Bong-Soo & Rui, Oliver M., 2002. "The dynamic relationship between stock returns and trading volume: Domestic and cross-country evidence," Journal of Banking & Finance, Elsevier, vol. 26(1), pages 51-78, January.
    16. Choi, Jin Hyuk & Larsen, Kasper & Seppi, Duane J., 2019. "Information and trading targets in a dynamic market equilibrium," Journal of Financial Economics, Elsevier, vol. 132(3), pages 22-49.
    17. Eyal Neuman & Moritz Vo{ss}, 2021. "Trading with the Crowd," Papers 2106.09267, arXiv.org, revised Mar 2023.
    18. Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
    19. Chuang, Wen-I & Liu, Hsiang-Hsi & Susmel, Rauli, 2012. "The bivariate GARCH approach to investigating the relation between stock returns, trading volume, and return volatility," Global Finance Journal, Elsevier, vol. 23(1), pages 1-15.
    20. Anzhela Knyazeva & Diana Knyazeva & Leonard Kostovetsky, 2018. "Investor heterogeneity and trading," European Financial Management, European Financial Management Association, vol. 24(4), pages 680-718, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.09505. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.