IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2004.00790.html
   My bibliography  Save this paper

On finite population games of optimal trading

Author

Listed:
  • David Evangelista
  • Yuri Thamsten

Abstract

We investigate stochastic differential games of optimal trading comprising a finite population. There are market frictions in the present framework, which take the form of stochastic permanent and temporary price impacts. Moreover, information is asymmetric among the traders, with mild assumptions. For constant market parameters, we provide specialized results. Each player selects her parameters based not only on her informational level but also on her particular preferences. The first part of the work is where we examine the unconstrained problem, in which traders do not necessarily have to reach the end of the horizon with vanishing inventory. In the sequel, we proceed to analyze the constrained situation as an asymptotic limit of the previous one. We prove the existence and uniqueness of a Nash equilibrium in both frameworks, alongside a characterization, under suitable assumptions. We conclude the paper by presenting an extension of the basic model to a hierarchical market, for which we establish the existence, uniqueness, and characterization of a Stackelberg-Nash equilibrium.

Suggested Citation

  • David Evangelista & Yuri Thamsten, 2020. "On finite population games of optimal trading," Papers 2004.00790, arXiv.org, revised Feb 2021.
  • Handle: RePEc:arx:papers:2004.00790
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2004.00790
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Obizhaeva, Anna A. & Wang, Jiang, 2013. "Optimal trading strategy and supply/demand dynamics," Journal of Financial Markets, Elsevier, vol. 16(1), pages 1-32.
    2. Katia Colaneri & Zehra Eksi & Rudiger Frey & Michaela Szolgyenyi, 2016. "Optimal Liquidation under Partial Information with Price Impact," Papers 1606.05079, arXiv.org, revised Jun 2019.
    3. Yann Braouezec & Lakshithe Wagalath, 2018. "Risk-Based Capital Requirements and Optimal Liquidation in a Stress Scenario," Post-Print hal-02505173, HAL.
    4. F. Bucci & I. Mastromatteo & Z. Eisler & F. Lillo & J.-P. Bouchaud & C.-A. Lehalle, 2020. "Co-impact: crowding effects in institutional trading activity," Quantitative Finance, Taylor & Francis Journals, vol. 20(2), pages 193-205, February.
    5. Pierre Cardaliaguet & Charles-Albert Lehalle, 2016. "Mean Field Game of Controls and An Application To Trade Crowding," Papers 1610.09904, arXiv.org, revised Sep 2017.
    6. Philippe Casgrain & Sebastian Jaimungal, 2019. "Trading algorithms with learning in latent alpha models," Mathematical Finance, Wiley Blackwell, vol. 29(3), pages 735-772, July.
    7. Lakshithe Wagalath & Jorge Zubelli, 2018. "A Liquidation Risk Adjustment For Value At Risk And Expected Shortfall," Post-Print hal-02572794, HAL.
    8. Bertsimas, Dimitris & Lo, Andrew W., 1998. "Optimal control of execution costs," Journal of Financial Markets, Elsevier, vol. 1(1), pages 1-50, April.
    9. Rama Cont & Lakshithe Wagalath, 2016. "Institutional Investors And The Dependence Structure Of Asset Returns," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-37, March.
    10. Lakshithe Wagalath & Jorge P. Zubelli, 2018. "A Liquidation Risk Adjustment For Value At Risk And Expected Shortfall," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(03), pages 1-21, May.
    11. Rama Cont & Lakshithe Wagalath, 2016. "Institutional Investors And The Dependence Structure Of Asset Returns," Post-Print hal-01562988, HAL.
    12. Guanxing Fu & Ulrich Horst, 2018. "Mean-Field Leader-Follower Games with Terminal State Constraint," Papers 1809.04401, arXiv.org.
    13. Fu, Guanxing & Horst, Ulrich, 2018. "Mean-Field Leader-Follower Games with Terminal State Constraint," Rationality and Competition Discussion Paper Series 129, CRC TRR 190 Rationality and Competition.
    14. Xuancheng Huang & Sebastian Jaimungal & Mojtaba Nourian, 2019. "Mean-Field Game Strategies for Optimal Execution," Applied Mathematical Finance, Taylor & Francis Journals, vol. 26(2), pages 153-185, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Masaaki Fujii & Akihiko Takahashi, 2020. "A Finite Agent Equilibrium in an Incomplete Market and its Strong Convergence to the Mean-Field Limit," CARF F-Series CARF-F-495, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Yufan Chen & Lan Wu & Renyuan Xu & Ruixun Zhang, 2024. "Periodic Trading Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor Players," Papers 2408.09505, arXiv.org.
    3. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    4. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    5. Max O. Souza & Yuri Thamsten, 2021. "On regularized optimal execution problems and their singular limits," Papers 2101.02731, arXiv.org, revised Aug 2023.
    6. Masaaki Fujii & Akihiko Takahashi, 2020. "A Finite Agent Equilibrium in an Incomplete Market and its Strong Convergence to the Mean-Field Limit," CIRJE F-Series CIRJE-F-1156, CIRJE, Faculty of Economics, University of Tokyo.
    7. Masaaki Fujii & Akihiko Takahashi, 2020. "Strong Convergence to the Mean-Field Limit of A Finite Agent Equilibrium," Papers 2010.09186, arXiv.org, revised Dec 2021.
    8. Alessandro Micheli & Johannes Muhle-Karbe & Eyal Neuman, 2021. "Closed-Loop Nash Competition for Liquidity," Papers 2112.02961, arXiv.org, revised Jun 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masaaki Fujii, 2020. "Probabilistic Approach to Mean Field Games and Mean Field Type Control Problems with Multiple Populations," CARF F-Series CARF-F-497, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    2. Guanxing Fu & Ulrich Horst & Xiaonyu Xia, 2020. "Portfolio Liquidation Games with Self-Exciting Order Flow," Papers 2011.05589, arXiv.org.
    3. Fu, Guanxing & Horst, Ulrich & Xia, Xiaonyu, 2022. "Portfolio Liquidation Games with Self-Exciting Order Flow," Rationality and Competition Discussion Paper Series 327, CRC TRR 190 Rationality and Competition.
    4. Masamitsu Ohnishi & Makoto Shimoshimizu, 2024. "Trade execution games in a Markovian environment," Papers 2405.07184, arXiv.org.
    5. Yufan Chen & Lan Wu & Renyuan Xu & Ruixun Zhang, 2024. "Periodic Trading Activities in Financial Markets: Mean-field Liquidation Game with Major-Minor Players," Papers 2408.09505, arXiv.org.
    6. Fayc{c}al Drissi, 2022. "Solvability of Differential Riccati Equations and Applications to Algorithmic Trading with Signals," Papers 2202.07478, arXiv.org, revised Aug 2023.
    7. Gianbiagio Curato & Jim Gatheral & Fabrizio Lillo, 2014. "Optimal execution with nonlinear transient market impact," Papers 1412.4839, arXiv.org.
    8. Olivier Guéant & Charles-Albert Lehalle, 2015. "General Intensity Shapes In Optimal Liquidation," Mathematical Finance, Wiley Blackwell, vol. 25(3), pages 457-495, July.
    9. Masaaki Fujii & Akihiko Takahashi, 2021. "Equilibrium Price Formation with a Major Player and its Mean Field Limit," CARF F-Series CARF-F-509, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    10. Guo Weilong & Minca Andreea & Wang Li, 2016. "The topology of overlapping portfolio networks," Statistics & Risk Modeling, De Gruyter, vol. 33(3-4), pages 139-155, December.
    11. Samuel N. Cohen & Lukasz Szpruch, 2011. "A limit order book model for latency arbitrage," Papers 1110.4811, arXiv.org.
    12. Michael Karpe, 2020. "An overall view of key problems in algorithmic trading and recent progress," Papers 2006.05515, arXiv.org.
    13. Christopher Lorenz & Alexander Schied, 2013. "Drift dependence of optimal trade execution strategies under transient price impact," Finance and Stochastics, Springer, vol. 17(4), pages 743-770, October.
    14. Yamamoto, Ryuichi, 2019. "Dynamic Predictor Selection And Order Splitting In A Limit Order Market," Macroeconomic Dynamics, Cambridge University Press, vol. 23(5), pages 1757-1792, July.
    15. Aur'elien Alfonsi & Alexander Schied & Florian Klock, 2013. "Multivariate transient price impact and matrix-valued positive definite functions," Papers 1310.4471, arXiv.org, revised Sep 2015.
    16. Aur'elien Alfonsi & Antje Fruth & Alexander Schied, 2007. "Optimal execution strategies in limit order books with general shape functions," Papers 0708.1756, arXiv.org, revised Feb 2010.
    17. Paolo Guasoni & Marko H. Weber, 2018. "Rebalancing Multiple Assets with Mutual Price Impact," Journal of Optimization Theory and Applications, Springer, vol. 179(2), pages 618-653, November.
    18. Alberto Ciacci & Takumi Sueshige & Hideki Takayasu & Kim Christensen & Misako Takayasu, 2020. "The microscopic relationships between triangular arbitrage and cross-currency correlations in a simple agent based model of foreign exchange markets," PLOS ONE, Public Library of Science, vol. 15(6), pages 1-19, June.
    19. Christoph Kuhn & Johannes Muhle-Karbe, 2013. "Optimal Liquidity Provision," Papers 1309.5235, arXiv.org, revised Feb 2015.
    20. Wei Cui & Anthony Brabazon & Michael O'Neill, 2011. "Dynamic trade execution: a grammatical evolution approach," International Journal of Financial Markets and Derivatives, Inderscience Enterprises Ltd, vol. 2(1/2), pages 4-31.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2004.00790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.