IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2408.05328.html
   My bibliography  Save this paper

From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management

Author

Listed:
  • Ning Li
  • Huaikang Zhou
  • Mingze Xu

Abstract

This study explores the potential of Large Language Models (LLMs), specifically GPT-4, to enhance objectivity in organizational task performance evaluations. Through comparative analyses across two studies, including various task performance outputs, we demonstrate that LLMs can serve as a reliable and even superior alternative to human raters in evaluating knowledge-based performance outputs, which are a key contribution of knowledge workers. Our results suggest that GPT ratings are comparable to human ratings but exhibit higher consistency and reliability. Additionally, combined multiple GPT ratings on the same performance output show strong correlations with aggregated human performance ratings, akin to the consensus principle observed in performance evaluation literature. However, we also find that LLMs are prone to contextual biases, such as the halo effect, mirroring human evaluative biases. Our research suggests that while LLMs are capable of extracting meaningful constructs from text-based data, their scope is currently limited to specific forms of performance evaluation. By highlighting both the potential and limitations of LLMs, our study contributes to the discourse on AI role in management studies and sets a foundation for future research to refine AI theoretical and practical applications in management.

Suggested Citation

  • Ning Li & Huaikang Zhou & Mingze Xu, 2024. "From Text to Insight: Leveraging Large Language Models for Performance Evaluation in Management," Papers 2408.05328, arXiv.org.
  • Handle: RePEc:arx:papers:2408.05328
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2408.05328
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Grimmer, Justin & Stewart, Brandon M., 2013. "Text as Data: The Promise and Pitfalls of Automatic Content Analysis Methods for Political Texts," Political Analysis, Cambridge University Press, vol. 21(3), pages 267-297, July.
    2. Kern, Florian & Rogge, Karoline S. & Howlett, Michael, 2019. "Policy mixes for sustainability transitions: New approaches and insights through bridging innovation and policy studies," Research Policy, Elsevier, vol. 48(10).
    3. Joseph S. Harrison & Gary R. Thurgood & Steven Boivie & Michael D. Pfarrer, 2019. "Measuring CEO personality: Developing, validating, and testing a linguistic tool," Strategic Management Journal, Wiley Blackwell, vol. 40(8), pages 1316-1330, August.
    4. Richard P. Larrick & Jack B. Soll, 2006. "Erratum--Intuitions About Combining Opinions: Misappreciation of the Averaging Principle," Management Science, INFORMS, vol. 52(2), pages 309-310, February.
    5. Jon Kleinberg & Jens Ludwig & Sendhil Mullainathan & Cass R. Sunstein, 2019. "Discrimination In The Age Of Algorithms," NBER Working Papers 25548, National Bureau of Economic Research, Inc.
    6. Peiyao Li & Noah Castelo & Zsolt Katona & Miklos Sarvary, 2024. "Frontiers: Determining the Validity of Large Language Models for Automated Perceptual Analysis," Marketing Science, INFORMS, vol. 43(2), pages 254-266, March.
    7. Sameer B. Srivastava & Amir Goldberg & V. Govind Manian & Christopher Potts, 2018. "Enculturation Trajectories: Language, Cultural Adaptation, and Individual Outcomes in Organizations," Management Science, INFORMS, vol. 64(3), pages 1348-1364, March.
    8. Adam M. Kleinbaum & Toby E. Stuart & Michael L. Tushman, 2013. "Discretion Within Constraint: Homophily and Structure in a Formal Organization," Organization Science, INFORMS, vol. 24(5), pages 1316-1336, October.
    9. Xianyong Yin & Lap Sum Chan & Debraj Bose & Anne U. Jackson & Peter VandeHaar & Adam E. Locke & Christian Fuchsberger & Heather M. Stringham & Ryan Welch & Ketian Yu & Lilian Fernandes Silva & Susan K, 2022. "Genome-wide association studies of metabolites in Finnish men identify disease-relevant loci," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    10. Richard P. Larrick & Jack B. Soll, 2006. "Intuitions About Combining Opinions: Misappreciation of the Averaging Principle," Management Science, INFORMS, vol. 52(1), pages 111-127, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Armstrong, J. Scott & Green, Kesten C. & Graefe, Andreas, 2015. "Golden rule of forecasting: Be conservative," Journal of Business Research, Elsevier, vol. 68(8), pages 1717-1731.
    2. Atanasov, Pavel & Witkowski, Jens & Ungar, Lyle & Mellers, Barbara & Tetlock, Philip, 2020. "Small steps to accuracy: Incremental belief updaters are better forecasters," Organizational Behavior and Human Decision Processes, Elsevier, vol. 160(C), pages 19-35.
    3. repec:cup:judgdm:v:14:y:2019:i:4:p:395-411 is not listed on IDEAS
    4. Gino, Francesca, 2008. "Do we listen to advice just because we paid for it? The impact of advice cost on its use," Organizational Behavior and Human Decision Processes, Elsevier, vol. 107(2), pages 234-245, November.
    5. repec:cup:judgdm:v:8:y:2013:i:2:p:91-105 is not listed on IDEAS
    6. Phanish Puranam, 2021. "Human–AI collaborative decision-making as an organization design problem," Journal of Organization Design, Springer;Organizational Design Community, vol. 10(2), pages 75-80, June.
    7. Patrick Afflerbach & Christopher Dun & Henner Gimpel & Dominik Parak & Johannes Seyfried, 2021. "A Simulation-Based Approach to Understanding the Wisdom of Crowds Phenomenon in Aggregating Expert Judgment," Business & Information Systems Engineering: The International Journal of WIRTSCHAFTSINFORMATIK, Springer;Gesellschaft für Informatik e.V. (GI), vol. 63(4), pages 329-348, August.
    8. Alison Wood Brooks & Francesca Gino & Maurice E. Schweitzer, 2015. "Smart People Ask for (My) Advice: Seeking Advice Boosts Perceptions of Competence," Management Science, INFORMS, vol. 61(6), pages 1421-1435, June.
    9. Mirko Kremer & Enno Siemsen & Douglas J. Thomas, 2016. "The Sum and Its Parts: Judgmental Hierarchical Forecasting," Management Science, INFORMS, vol. 62(9), pages 2745-2764, September.
    10. Julia A. Minson & Jennifer S. Mueller & Richard P. Larrick, 2018. "The Contingent Wisdom of Dyads: When Discussion Enhances vs. Undermines the Accuracy of Collaborative Judgments," Management Science, INFORMS, vol. 64(9), pages 4177-4192, September.
    11. Ilan Yaniv & Shoham Choshen-Hillel, 2012. "When guessing what another person would say is better than giving your own opinion: Using perspective-taking to improve advice-taking," Discussion Paper Series dp622, The Federmann Center for the Study of Rationality, the Hebrew University, Jerusalem.
    12. Schlag, Karl H. & Zapechelnyuk, Andriy, 2017. "Dynamic benchmark targeting," Journal of Economic Theory, Elsevier, vol. 169(C), pages 145-169.
    13. Mobasseri, Sanaz & Stein, Daniel H. & Carney, Dana R., 2022. "The accurate judgment of social network characteristics in the lab and field using thin slices of the behavioral stream," Organizational Behavior and Human Decision Processes, Elsevier, vol. 168(C).
    14. Oo, Pyayt P. & Jiang, Lin & Sahaym, Arvin & Parhankangas, Annaleena & Chan, Richard, 2023. "Actions in words: How entrepreneurs use diversified and changing speech acts to achieve funding success," Journal of Business Venturing, Elsevier, vol. 38(2).
    15. Wang, Xiaoqian & Hyndman, Rob J. & Li, Feng & Kang, Yanfei, 2023. "Forecast combinations: An over 50-year review," International Journal of Forecasting, Elsevier, vol. 39(4), pages 1518-1547.
    16. Graefe, Andreas, 2023. "Embrace the differences: Revisiting the PollyVote method of combining forecasts for U.S. presidential elections (2004 to 2020)," International Journal of Forecasting, Elsevier, vol. 39(1), pages 170-177.
    17. Irene Scopelliti & Carey K. Morewedge & Erin McCormick & H. Lauren Min & Sophie Lebrecht & Karim S. Kassam, 2015. "Bias Blind Spot: Structure, Measurement, and Consequences," Management Science, INFORMS, vol. 61(10), pages 2468-2486, October.
    18. Johannes Müller-Trede & Shoham Choshen-Hillel & Meir Barneron & Ilan Yaniv, 2018. "The Wisdom of Crowds in Matters of Taste," Management Science, INFORMS, vol. 64(4), pages 1779-1803, April.
    19. Healey, Mark P. & Bleda, Mercedes & Querbes, Adrien, 2021. "Opportunity evaluation in teams: A social cognitive model," Journal of Business Venturing, Elsevier, vol. 36(4).
    20. Yael Grushka-Cockayne & Kenneth C. Lichtendahl Jr. & Victor Richmond R. Jose & Robert L. Winkler, 2017. "Quantile Evaluation, Sensitivity to Bracketing, and Sharing Business Payoffs," Operations Research, INFORMS, vol. 65(3), pages 712-728, June.
    21. Graefe, Andreas & Armstrong, J. Scott & Jones, Randall J. & Cuzán, Alfred G., 2014. "Combining forecasts: An application to elections," International Journal of Forecasting, Elsevier, vol. 30(1), pages 43-54.
    22. Kausel, Edgar E. & Culbertson, Satoris S. & Leiva, Pedro I. & Slaughter, Jerel E. & Jackson, Alexander T., 2015. "Too arrogant for their own good? Why and when narcissists dismiss advice," Organizational Behavior and Human Decision Processes, Elsevier, vol. 131(C), pages 33-50.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2408.05328. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.