IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.21119.html
   My bibliography  Save this paper

Potential weights and implicit causal designs in linear regression

Author

Listed:
  • Jiafeng Chen

Abstract

When do linear regressions estimate causal effects in quasi-experiments? This paper provides a generic diagnostic that assesses whether a given linear regression specification on a given dataset admits a design-based interpretation. To do so, we define a notion of potential weights, which encode counterfactual decisions a given regression makes to unobserved potential outcomes. If the specification does admit such an interpretation, this diagnostic can find a vector of unit-level treatment assignment probabilities -- which we call an implicit design -- under which the regression estimates a causal effect. This diagnostic also finds the implicit causal effect estimand. Knowing the implicit design and estimand adds transparency, leads to further sanity checks, and opens the door to design-based statistical inference. When applied to regression specifications studied in the causal inference literature, our framework recovers and extends existing theoretical results. When applied to widely-used specifications not covered by existing causal inference literature, our framework generates new theoretical insights.

Suggested Citation

  • Jiafeng Chen, 2024. "Potential weights and implicit causal designs in linear regression," Papers 2407.21119, arXiv.org.
  • Handle: RePEc:arx:papers:2407.21119
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.21119
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Praveen Ranjan Srivastava & Prajwal Eachempati & Ajay Kumar & Ashish Kumar Jha & Lalitha Dhamotharan, 2023. "Best strategy to win a match: an analytical approach using hybrid machine learning-clustering-association rule framework," Annals of Operations Research, Springer, vol. 325(1), pages 319-361, June.
    2. Alberini, Anna & Bezhanishvili, Levan & Ščasný, Milan, 2022. "“Wild” tariff schemes: Evidence from the Republic of Georgia," Energy Economics, Elsevier, vol. 110(C).
    3. repec:cte:wsrepe:37973 is not listed on IDEAS
    4. Tymon Słoczyński, 2022. "Interpreting OLS Estimands When Treatment Effects Are Heterogeneous: Smaller Groups Get Larger Weights," The Review of Economics and Statistics, MIT Press, vol. 104(3), pages 501-509, May.
    5. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    6. Magne Mogstad & Joseph P Romano & Azeem M Shaikh & Daniel Wilhelm, 2024. "Inference for Ranks with Applications to Mobility across Neighbourhoods and Academic Achievement across Countries," The Review of Economic Studies, Review of Economic Studies Ltd, vol. 91(1), pages 476-518.
    7. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    8. Derksen, Laura & Kerwin, Jason Theodore & Reynoso, Natalia Ordaz & Sterck, Olivier, 2021. "Appointments: A More Effective Commitment Device for Health Behaviors," SocArXiv y8gh7, Center for Open Science.
    9. Conti, Gabriella & Poupakis, Stavros & Ekamper, Peter & Bijwaard, Govert E. & Lumey, L.H., 2024. "Severe prenatal shocks and adolescent health: Evidence from the Dutch Hunger Winter," Economics & Human Biology, Elsevier, vol. 53(C).
    10. Özler, Berk & Çelik, Çiğdem & Cunningham, Scott & Cuevas, P. Facundo & Parisotto, Luca, 2021. "Children on the move: Progressive redistribution of humanitarian cash transfers among refugees," Journal of Development Economics, Elsevier, vol. 153(C).
    11. Jinglong Zhao, 2024. "Experimental Design For Causal Inference Through An Optimization Lens," Papers 2408.09607, arXiv.org, revised Aug 2024.
    12. Galvez, Julio & Gambacorta, Leonardo & Mayordomo, Sergio & Serena, Jose Maria, 2021. "Dollar borrowing, firm credit risk, and FX-hedged funding opportunities," Journal of Corporate Finance, Elsevier, vol. 68(C).
    13. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    14. Martinez, Isabel Z., 2016. "Beggar-Thy-Neighbour Tax Cuts: Mobility after a Local Income and Wealth Tax Reform in Switzerland," VfS Annual Conference 2016 (Augsburg): Demographic Change 145643, Verein für Socialpolitik / German Economic Association.
    15. Rami V. Tabri & Mathew J. Elias, 2024. "Testing for Restricted Stochastic Dominance under Survey Nonresponse with Panel Data: Theory and an Evaluation of Poverty in Australia," Papers 2406.15702, arXiv.org.
    16. Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
    17. Gharehgozli, Orkideh, 2021. "An empirical comparison between a regression framework and the Synthetic Control Method," The Quarterly Review of Economics and Finance, Elsevier, vol. 81(C), pages 70-81.
    18. Dela‐Dem Fiankor & Fabio G. Santeramo, 2023. "Revisiting the impact of per‐unit duties on agricultural export prices," Applied Economic Perspectives and Policy, John Wiley & Sons, vol. 45(3), pages 1472-1492, September.
    19. Silva, Thiago Christiano & de Souza, Sergio Rubens Stancato & Guerra, Solange Maria & Tabak, Benjamin Miranda, 2023. "COVID-19 and bank branch lending: The moderating effect of digitalization," Journal of Banking & Finance, Elsevier, vol. 152(C).
    20. Startz, Richard & Steigerwald, Douglas G., 2024. "The variance of regression coefficients when the population is finite," Journal of Econometrics, Elsevier, vol. 240(1).
    21. George Gui & Harikesh Nair & Fengshi Niu, 2021. "Auction Throttling and Causal Inference of Online Advertising Effects," Papers 2112.15155, arXiv.org, revised Feb 2022.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.21119. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.