IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.09664.html
   My bibliography  Save this paper

An Introduction to Permutation Processes (version 0.5)

Author

Listed:
  • Fang Han

Abstract

These lecture notes were prepared for a special topics course in the Department of Statistics at the University of Washington, Seattle. They comprise the first eight chapters of a book currently in progress.

Suggested Citation

  • Fang Han, 2024. "An Introduction to Permutation Processes (version 0.5)," Papers 2407.09664, arXiv.org.
  • Handle: RePEc:arx:papers:2407.09664
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.09664
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Holger Sambale & Arthur Sinulis, 2022. "Concentration Inequalities on the Multislice and for Sampling Without Replacement," Journal of Theoretical Probability, Springer, vol. 35(4), pages 2712-2737, December.
    2. H Shi & M Drton & F Han, 2022. "On the power of Chatterjee’s rank correlation [Adaptive test of independence based on HSIC measures]," Biometrika, Biometrika Trust, vol. 109(2), pages 317-333.
    3. Babu, G. Jogesh & Singh, Kesar, 1985. "Edgeworth expansions for sampling without replacement from finite populations," Journal of Multivariate Analysis, Elsevier, vol. 17(3), pages 261-278, December.
    4. Fang Han & Yicheng Li, 2020. "Moment Bounds for Large Autocovariance Matrices Under Dependence," Journal of Theoretical Probability, Springer, vol. 33(3), pages 1445-1492, September.
    5. Xiaohong Chen & Timothy M. Christensen, 2018. "Optimal sup‐norm rates and uniform inference on nonlinear functionals of nonparametric IV regression," Quantitative Economics, Econometric Society, vol. 9(1), pages 39-84, March.
    6. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2020. "Sampling‐Based versus Design‐Based Uncertainty in Regression Analysis," Econometrica, Econometric Society, vol. 88(1), pages 265-296, January.
    7. Alberto Abadie & Susan Athey & Guido W. Imbens & Jeffrey M. Wooldridge, 2014. "Finite Population Causal Standard Errors," NBER Working Papers 20325, National Bureau of Economic Research, Inc.
    8. Sourav Chatterjee, 2021. "A New Coefficient of Correlation," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 116(536), pages 2009-2022, October.
    9. Cattaneo, Matias D. & Farrell, Max H., 2013. "Optimal convergence rates, Bahadur representation, and asymptotic normality of partitioning estimators," Journal of Econometrics, Elsevier, vol. 174(2), pages 127-143.
    10. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    11. Z Lin & F Han, 2023. "On boosting the power of Chatterjee’s rank correlation," Biometrika, Biometrika Trust, vol. 110(2), pages 283-299.
    12. Hongjian Shi & Mathias Drton & Fang Han, 2022. "Distribution-Free Consistent Independence Tests via Center-Outward Ranks and Signs," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 117(537), pages 395-410, January.
    13. Newey, Whitney K., 1997. "Convergence rates and asymptotic normality for series estimators," Journal of Econometrics, Elsevier, vol. 79(1), pages 147-168, July.
    14. Yuehao Bai & Azeem M. Shaikh & Max Tabord-Meehan, 2024. "A Primer on the Analysis of Randomized Experiments and a Survey of some Recent Advances," Papers 2405.03910, arXiv.org.
    15. Lihua Lei & Peng Ding, 2021. "Regression adjustment in completely randomized experiments with a diverging number of covariates [Covariance adjustments for the analysis of randomized field experiments]," Biometrika, Biometrika Trust, vol. 108(4), pages 815-828.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    2. Chernozhukov, Victor & Fernández-Val, Iván & Weidner, Martin, 2024. "Network and panel quantile effects via distribution regression," Journal of Econometrics, Elsevier, vol. 240(2).
    3. Ashesh Rambachan & Jonathan Roth, 2020. "Design-Based Uncertainty for Quasi-Experiments," Papers 2008.00602, arXiv.org, revised Oct 2024.
    4. Michael Jansson & Demian Pouzo, 2017. "Towards a General Large Sample Theory for Regularized Estimators," Papers 1712.07248, arXiv.org, revised Jul 2020.
    5. Han, Kevin & Basse, Guillaume & Bojinov, Iavor, 2024. "Population interference in panel experiments," Journal of Econometrics, Elsevier, vol. 238(1).
    6. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Papers 2006.09587, arXiv.org, revised Nov 2024.
    7. Yihui He & Fang Han, 2023. "On propensity score matching with a diverging number of matches," Papers 2310.14142, arXiv.org, revised Nov 2023.
    8. Christoph Breunig & Peter Haan, 2018. "Nonparametric Regression with Selectively Missing Covariates," Papers 1810.00411, arXiv.org, revised Oct 2020.
    9. Jose Olmo, 2023. "A nonparametric predictive regression model using partitioning estimators based on Taylor expansions," Journal of Time Series Analysis, Wiley Blackwell, vol. 44(3), pages 294-318, May.
    10. Hoshino Tadao & Yanagi Takahide, 2022. "Estimating marginal treatment effects under unobserved group heterogeneity," Journal of Causal Inference, De Gruyter, vol. 10(1), pages 197-216, January.
    11. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Fernández-Val, Iván, 2019. "Conditional quantile processes based on series or many regressors," Journal of Econometrics, Elsevier, vol. 213(1), pages 4-29.
    12. Startz, Richard & Steigerwald, Douglas G., 2024. "The variance of regression coefficients when the population is finite," Journal of Econometrics, Elsevier, vol. 240(1).
    13. Nan Liu & Yanbo Liu & Yuya Sasaki, 2024. "Estimation and Inference for Causal Functions with Multiway Clustered Data," Papers 2409.06654, arXiv.org.
    14. Zhexiao Lin & Fang Han, 2023. "On the failure of the bootstrap for Chatterjee's rank correlation," Papers 2303.14088, arXiv.org, revised Apr 2023.
    15. Chen, Xiaohong & Christensen, Timothy M., 2015. "Optimal uniform convergence rates and asymptotic normality for series estimators under weak dependence and weak conditions," Journal of Econometrics, Elsevier, vol. 188(2), pages 447-465.
    16. Belloni, Alexandre & Chernozhukov, Victor & Chetverikov, Denis & Kato, Kengo, 2015. "Some new asymptotic theory for least squares series: Pointwise and uniform results," Journal of Econometrics, Elsevier, vol. 186(2), pages 345-366.
    17. Li, Jia & Liao, Zhipeng, 2020. "Uniform nonparametric inference for time series," Journal of Econometrics, Elsevier, vol. 219(1), pages 38-51.
    18. Hoshino, Tadao & Yanagi, Takahide, 2023. "Treatment effect models with strategic interaction in treatment decisions," Journal of Econometrics, Elsevier, vol. 236(2).
    19. Christoph Breunig & Xiaohong Chen, 2020. "Adaptive, Rate-Optimal Hypothesis Testing in Nonparametric IV Models," Cowles Foundation Discussion Papers 2238R, Cowles Foundation for Research in Economics, Yale University, revised Dec 2021.
    20. Farrell, Max H., 2015. "Robust inference on average treatment effects with possibly more covariates than observations," Journal of Econometrics, Elsevier, vol. 189(1), pages 1-23.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.09664. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.