IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2407.13213.html
   My bibliography  Save this paper

Leveraging Machine Learning for High-Dimensional Option Pricing within the Uncertain Volatility Model

Author

Listed:
  • Ludovic Goudenege
  • Andrea Molent
  • Antonino Zanette

Abstract

This paper explores the application of Machine Learning techniques for pricing high-dimensional options within the framework of the Uncertain Volatility Model (UVM). The UVM is a robust framework that accounts for the inherent unpredictability of market volatility by setting upper and lower bounds on volatility and the correlation among underlying assets. By leveraging historical data and extreme values of estimated volatilities and correlations, the model establishes a confidence interval for future volatility and correlations, thus providing a more realistic approach to option pricing. By integrating advanced Machine Learning algorithms, we aim to enhance the accuracy and efficiency of option pricing under the UVM, especially when the option price depends on a large number of variables, such as in basket or path-dependent options. Our approach evolves backward in time, dynamically selecting at each time step the most expensive volatility and correlation for each market state. Specifically, it identifies the particular values of volatility and correlation that maximize the expected option value at the next time step. This is achieved through the use of Gaussian Process regression, the computation of expectations via a single step of a multidimensional tree and the Sequential Quadratic Programming optimization algorithm. The numerical results demonstrate that the proposed approach can significantly improve the precision of option pricing and risk management strategies compared with methods already in the literature, particularly in high-dimensional contexts.

Suggested Citation

  • Ludovic Goudenege & Andrea Molent & Antonino Zanette, 2024. "Leveraging Machine Learning for High-Dimensional Option Pricing within the Uncertain Volatility Model," Papers 2407.13213, arXiv.org.
  • Handle: RePEc:arx:papers:2407.13213
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2407.13213
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ekvall, Niklas, 1996. "A lattice approach for pricing of multivariate contingent claims," European Journal of Operational Research, Elsevier, vol. 91(2), pages 214-228, June.
    2. Ludovic Goudenège & Andrea Molent & Antonino Zanette, 2020. "Machine learning for pricing American options in high-dimensional Markovian and non-Markovian models," Quantitative Finance, Taylor & Francis Journals, vol. 20(4), pages 573-591, April.
    3. H. A. Windcliff & P. A. Forsyth & K. R. Vetzal, 2006. "Numerical Methods and Volatility Models for Valuing Cliquet Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 13(4), pages 353-386.
    4. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    2. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    3. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    4. Elyes Jouini & Pierre-Francois Koehl, "undated". "Pricing of Non-redundant Derivatives in a Complete Market," New York University, Leonard N. Stern School Finance Department Working Paper Seires 99-009, New York University, Leonard N. Stern School of Business-.
    5. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    6. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    7. Patrick Beissner, 2019. "Coherent-Price Systems and Uncertainty-Neutral Valuation," Risks, MDPI, vol. 7(3), pages 1-18, September.
    8. Mai Jan-Frederik & Schenk Steffen & Scherer Matthias, 2015. "Analyzing model robustness via a distortion of the stochastic root: A Dirichlet prior approach," Statistics & Risk Modeling, De Gruyter, vol. 32(3-4), pages 177-195, December.
    9. Erhan Bayraktar & Matteo Burzoni, 2020. "On the quasi-sure superhedging duality with frictions," Finance and Stochastics, Springer, vol. 24(1), pages 249-275, January.
    10. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    11. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2018. "Robust XVA," Papers 1808.04908, arXiv.org, revised Feb 2020.
    12. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    13. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    14. Patrick Bei{ss}ner, 2012. "Coherent Price Systems and Uncertainty-Neutral Valuation," Papers 1202.6632, arXiv.org.
    15. Gambaro, Anna Maria & Kyriakou, Ioannis & Fusai, Gianluca, 2020. "General lattice methods for arithmetic Asian options," European Journal of Operational Research, Elsevier, vol. 282(3), pages 1185-1199.
    16. Daniel Sevcovic, 2017. "Nonlinear Parabolic Equations arising in Mathematical Finance," Papers 1707.01436, arXiv.org.
    17. Kaval, K. & Molchanov, I., 2006. "Link-save trading," Journal of Mathematical Economics, Elsevier, vol. 42(6), pages 710-728, September.
    18. Hyungsok Ahn Adviti & Glen Swindle, 1997. "Misspecified asset price models and robust hedging strategies," Applied Mathematical Finance, Taylor & Francis Journals, vol. 4(1), pages 21-36.
    19. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    20. Huy N. Chau, 2020. "On robust fundamental theorems of asset pricing in discrete time," Papers 2007.02553, arXiv.org, revised Apr 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2407.13213. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.