IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1707.01436.html
   My bibliography  Save this paper

Nonlinear Parabolic Equations arising in Mathematical Finance

Author

Listed:
  • Daniel Sevcovic

Abstract

This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.

Suggested Citation

  • Daniel Sevcovic, 2017. "Nonlinear Parabolic Equations arising in Mathematical Finance," Papers 1707.01436, arXiv.org.
  • Handle: RePEc:arx:papers:1707.01436
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1707.01436
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rüdiger Frey & Alexander Stremme, 1997. "Market Volatility and Feedback Effects from Dynamic Hedging," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 351-374, October.
    2. Kumar Muthuraman & Sunil Kumar, 2006. "Multidimensional Portfolio Optimization With Proportional Transaction Costs," Mathematical Finance, Wiley Blackwell, vol. 16(2), pages 301-335, April.
    3. Halil Mete Soner & Guy Barles, 1998. "Option pricing with transaction costs and a nonlinear Black-Scholes equation," Finance and Stochastics, Springer, vol. 2(4), pages 369-397.
    4. Marek Musiela & Thaleia Zariphopoulou, 2004. "An example of indifference prices under exponential preferences," Finance and Stochastics, Springer, vol. 8(2), pages 229-239, May.
    5. Suhas Nayak & George Papanicolaou, 2008. "Market Influence of Portfolio Optimizers," Applied Mathematical Finance, Taylor & Francis Journals, vol. 15(1), pages 21-40.
    6. Tourin, Agnes & Zariphopoulou, Thaleia, 1994. "Numerical Schemes for Investment Models with Singular Transactions," Computational Economics, Springer;Society for Computational Economics, vol. 7(4), pages 287-307.
    7. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Daniel Sevcovic & Magdalena Zitnanska, 2016. "Analysis of the nonlinear option pricing model under variable transaction costs," Papers 1603.03874, arXiv.org.
    2. Daniel Sevcovic & Cyril Izuchukwu Udeani, 2021. "Multidimensional linear and nonlinear partial integro-differential equation in Bessel potential spaces with applications in option pricing," Papers 2106.10498, arXiv.org.
    3. Daniel Ševčovič & Cyril Izuchukwu Udeani, 2021. "Multidimensional Linear and Nonlinear Partial Integro-Differential Equation in Bessel Potential Spaces with Applications in Option Pricing," Mathematics, MDPI, vol. 9(13), pages 1-12, June.
    4. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Option by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/18, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    5. Karol Duris & Shih-Hau Tan & Choi-Hong Lai & Daniel Sevcovic, 2015. "Comparison of the analytical approximation formula and Newton's method for solving a class of nonlinear Black-Scholes parabolic equations," Papers 1511.05661, arXiv.org, revised Nov 2015.
    6. Jose Cruz & Maria Grossinho & Daniel Sevcovic & Cyril Izuchukwu Udeani, 2022. "Linear and Nonlinear Partial Integro-Differential Equations arising from Finance," Papers 2207.11568, arXiv.org.
    7. Olivier Guéant, 2016. "The Financial Mathematics of Market Liquidity: From Optimal Execution to Market Making," Post-Print hal-01393136, HAL.
    8. Dylan Possamai & H. Mete Soner & Nizar Touzi, 2012. "Homogenization and asymptotics for small transaction costs: the multidimensional case," Papers 1212.6275, arXiv.org, revised Jan 2013.
    9. Jose Cruz & Daniel Sevcovic, 2019. "Option Pricing in Illiquid Markets with Jumps," Papers 1901.06467, arXiv.org.
    10. Wei, Dongming & Erlangga, Yogi Ahmad & Zhumakhanova, Gulzat, 2024. "A finite element approach to the numerical solutions of Leland’s model," International Review of Economics & Finance, Elsevier, vol. 89(PA), pages 582-593.
    11. Michail Anthropelos & Scott Robertson & Konstantinos Spiliopoulos, 2015. "The pricing of contingent claims and optimal positions in asymptotically complete markets," Papers 1509.06210, arXiv.org, revised Sep 2016.
    12. Arash Fahim & Wan-Yu Tsai, 2017. "A Numerical Scheme for A Singular control problem: Investment-Consumption Under Proportional Transaction Costs," Papers 1711.01017, arXiv.org.
    13. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations," Papers 1707.00356, arXiv.org.
    14. Daniel Sevcovic, 2007. "An iterative algorithm for evaluating approximations to the optimal exercise boundary for a nonlinear Black-Scholes equation," Papers 0710.5301, arXiv.org.
    15. Maria do Rosario Grossinho & Yaser Kord Faghan & Daniel Sevcovic, 2016. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1611.00885, arXiv.org, revised Nov 2017.
    16. Sergei Fedotov & Sergei Mikhailov, 2001. "Option Pricing For Incomplete Markets Via Stochastic Optimization: Transaction Costs, Adaptive Control And Forecast," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 179-195.
    17. Maria do Rosário Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing Perpetual Put Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Working Papers REM 2017/19, ISEG - Lisbon School of Economics and Management, REM, Universidade de Lisboa.
    18. Ahmadian, D. & Farkhondeh Rouz, O. & Ivaz, K. & Safdari-Vaighani, A., 2020. "Robust numerical algorithm to the European option with illiquid markets," Applied Mathematics and Computation, Elsevier, vol. 366(C).
    19. Kristoffer Glover & Peter W Duck & David P Newton, 2010. "On nonlinear models of markets with finite liquidity: Some cautionary notes," Published Paper Series 2010-5, Finance Discipline Group, UTS Business School, University of Technology, Sydney.
    20. Maria do Rosario Grossinho & Yaser Faghan Kord & Daniel Sevcovic, 2017. "Pricing American Call Options by the Black-Scholes Equation with a Nonlinear Volatility Function," Papers 1707.00358, arXiv.org, revised Jun 2018.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1707.01436. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.