IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1808.04908.html
   My bibliography  Save this paper

Robust XVA

Author

Listed:
  • Maxim Bichuch
  • Agostino Capponi
  • Stephan Sturm

Abstract

We introduce an arbitrage-free framework for robust valuation adjustments. An investor trades a credit default swap portfolio with a risky counterparty, and hedges credit risk by taking a position in defaultable bonds. The investor does not know the return rate of her counterparty's bond, but is confident that it lies within an uncertainty interval. We derive both upper and lower bounds for the XVA process of the portfolio, and show that these bounds may be recovered as solutions of nonlinear ordinary differential equations. The presence of collateralization and closeout payoffs leads to important differences with respect to classical credit risk valuation. The value of the super-replicating portfolio cannot be directly obtained by plugging one of the extremes of the uncertainty interval in the valuation equation, but rather depends on the relation between the XVA replicating portfolio and the close-out value throughout the life of the transaction. Our comparative statics analysis indicates that credit contagion has a nonlinear effect on the replication strategies and on the XVA.

Suggested Citation

  • Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2018. "Robust XVA," Papers 1808.04908, arXiv.org, revised Feb 2020.
  • Handle: RePEc:arx:papers:1808.04908
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1808.04908
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jean-Pierre Fouque & Ning Ning, 2017. "Uncertain Volatility Models with Stochastic Bounds," Papers 1702.05036, arXiv.org.
    2. Crépey, Stéphane & Song, Shiqi, 2015. "BSDEs of counterparty risk," Stochastic Processes and their Applications, Elsevier, vol. 125(8), pages 3023-3052.
    3. Rüdiger Frey & Jochen Backhaus, 2008. "Pricing And Hedging Of Portfolio Credit Derivatives With Interacting Default Intensities," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 11(06), pages 611-634.
    4. Stéphane Crépey & Shiqi Song, 2014. "BSDEs of Counterparty Risk," Working Papers hal-01088941, HAL.
    5. T. J. Lyons, 1995. "Uncertain volatility and the risk-free synthesis of derivatives," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 117-133.
    6. Damiano Brigo & Andrea Pallavicini, 2014. "Nonlinear consistent valuation of CCP cleared or CSA bilateral trades with initial margins under credit, funding and wrong-way risks," Journal of Financial Engineering (JFE), World Scientific Publishing Co. Pte. Ltd., vol. 1(01), pages 1-60.
    7. Tolulope Fadina & Thorsten Schmidt, 2018. "Ambiguity in defaultable term structure models," Papers 1801.10498, arXiv.org, revised Apr 2018.
    8. M. Avellaneda & A. Levy & A. ParAS, 1995. "Pricing and hedging derivative securities in markets with uncertain volatilities," Applied Mathematical Finance, Taylor & Francis Journals, vol. 2(2), pages 73-88.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2020. "Robust XVA," Mathematical Finance, Wiley Blackwell, vol. 30(3), pages 738-781, July.
    2. Maxim Bichuch & Agostino Capponi & Stephan Sturm, 2016. "Arbitrage-Free XVA," Papers 1608.02690, arXiv.org.
    3. Antoine Jacquier & Patrick Roome, 2015. "Black-Scholes in a CEV random environment," Papers 1503.08082, arXiv.org, revised Nov 2017.
    4. Li, Xinpeng & Peng, Shige, 2011. "Stopping times and related Itô's calculus with G-Brownian motion," Stochastic Processes and their Applications, Elsevier, vol. 121(7), pages 1492-1508, July.
    5. Kim Weston, 2016. "Stability of utility maximization in nonequivalent markets," Finance and Stochastics, Springer, vol. 20(2), pages 511-541, April.
    6. Chen An & Mahayni Antje B., 2008. "Endowment Assurance Products: Effectiveness of Risk-Minimizing Strategies under Model Risk," Asia-Pacific Journal of Risk and Insurance, De Gruyter, vol. 2(2), pages 1-29, March.
    7. Han, Xingyu, 2018. "Pricing and hedging vulnerable option with funding costs and collateral," Chaos, Solitons & Fractals, Elsevier, vol. 112(C), pages 103-115.
    8. Peter Carr & Travis Fisher & Johannes Ruf, 2014. "On the hedging of options on exploding exchange rates," Finance and Stochastics, Springer, vol. 18(1), pages 115-144, January.
    9. Daniel Bartl & Michael Kupper & David J. Prömel & Ludovic Tangpi, 2019. "Duality for pathwise superhedging in continuous time," Finance and Stochastics, Springer, vol. 23(3), pages 697-728, July.
    10. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    11. Giorgio Fabbri & Fausto Gozzi & Andrzej Swiech, 2017. "Stochastic Optimal Control in Infinite Dimensions - Dynamic Programming and HJB Equations," Post-Print hal-01505767, HAL.
    12. Sergey Nadtochiy & Jan Obłój, 2017. "Robust Trading Of Implied Skew," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 20(02), pages 1-41, March.
    13. Julian Holzermann, 2019. "Term Structure Modeling under Volatility Uncertainty," Papers 1904.02930, arXiv.org, revised Sep 2021.
    14. Daniel Bartl & Michael Kupper & Ariel Neufeld, 2020. "Pathwise superhedging on prediction sets," Finance and Stochastics, Springer, vol. 24(1), pages 215-248, January.
    15. Dirk Becherer & Klebert Kentia, 2017. "Good Deal Hedging and Valuation under Combined Uncertainty about Drift and Volatility," Papers 1704.02505, arXiv.org.
    16. Rosella Castellano & Roy Cerqueti, 2013. "Roots and effects of financial misperception in a stochastic dominance framework," Quality & Quantity: International Journal of Methodology, Springer, vol. 47(6), pages 3371-3389, October.
    17. Jean-Pierre Fouque & Ning Ning, 2017. "Uncertain Volatility Models with Stochastic Bounds," Papers 1702.05036, arXiv.org.
    18. Yuecai Han & Chunyang Liu, 2018. "Asian Option Pricing under Uncertain Volatility Model," Papers 1808.00656, arXiv.org.
    19. Shige Peng & Shuzhen Yang, 2020. "Distributional uncertainty of the financial time series measured by G-expectation," Papers 2011.09226, arXiv.org, revised Jul 2021.
    20. Marcel Nutz & Jianfeng Zhang, 2012. "Optimal stopping under adverse nonlinear expectation and related games," Papers 1212.2140, arXiv.org, revised Sep 2015.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1808.04908. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.