IDEAS home Printed from https://ideas.repec.org/a/gam/jrisks/v8y2020i4p108-d431429.html
   My bibliography  Save this article

Comparing Two Different Option Pricing Methods

Author

Listed:
  • Alessandro Bondi

    (Classe di Scienze, Scuola Normale Superiore di Pisa, 56126 Pisa, Italy)

  • Dragana Radojičić

    (TU Wien, Institute of Statistics and Mathematical Methods in Economics, 22180 Vienna, Austria)

  • Thorsten Rheinländer

    (TU Wien, Institute of Statistics and Mathematical Methods in Economics, 22180 Vienna, Austria)

Abstract

Motivated by new financial markets where there is no canonical choice of a risk-neutral measure, we compared two different methods for pricing options: calibration with an entropic penalty term and valuation by the Esscher measure. The main aim of this paper is to contrast the outcomes of those two methods with real-traded call option prices in a liquid market like NASDAQ stock exchange, using data referring to the period 2019–2020. Although the Esscher measure method slightly underperforms the calibration method in terms of absolute values of the percentage difference between real and model prices, it could be the only feasible choice if there are not many liquidly traded derivatives in the market.

Suggested Citation

  • Alessandro Bondi & Dragana Radojičić & Thorsten Rheinländer, 2020. "Comparing Two Different Option Pricing Methods," Risks, MDPI, vol. 8(4), pages 1-28, October.
  • Handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:108-:d:431429
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-9091/8/4/108/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-9091/8/4/108/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tahir Choulli & Christophe Stricker, 2006. "More On Minimal Entropy–Hellinger Martingale Measure," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 1-19, January.
    2. Van Heerwaarden, A. E. & Kaas, R. & Goovaerts, M. J., 1989. "Properties of the Esscher premium calculation principle," Insurance: Mathematics and Economics, Elsevier, vol. 8(4), pages 261-267, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Corina Constantinescu & Julia Eisenberg, 2021. "Special Issue “Interplay between Financial and Actuarial Mathematics”," Risks, MDPI, vol. 9(8), pages 1-3, July.
    2. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choo, Weihao & de Jong, Piet, 2015. "The tradeoff insurance premium as a two-sided generalisation of the distortion premium," Insurance: Mathematics and Economics, Elsevier, vol. 65(C), pages 238-246.
    2. Wang, Wei & Xu, Huifu & Ma, Tiejun, 2023. "Optimal scenario-dependent multivariate shortfall risk measure and its application in risk capital allocation," European Journal of Operational Research, Elsevier, vol. 306(1), pages 322-347.
    3. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.
    4. Furman, Edward & Zitikis, Ricardas, 2008. "Weighted premium calculation principles," Insurance: Mathematics and Economics, Elsevier, vol. 42(1), pages 459-465, February.
    5. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    6. Ivivi J. Mwaniki, 2017. "On skewed, leptokurtic returns and pentanomial lattice option valuation via minimal entropy martingale measure," Cogent Economics & Finance, Taylor & Francis Journals, vol. 5(1), pages 1358894-135, January.
    7. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    8. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    9. Goovaerts, Marc J. & Kaas, Rob & Laeven, Roger J.A. & Tang, Qihe, 2004. "A comonotonic image of independence for additive risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 35(3), pages 581-594, December.
    10. Tsukasa Fujiwara, 2009. "The Minimal Entropy Martingale Measures for Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 65-95, March.
    11. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    12. Friedrich Hubalek & Carlo Sgarra, 2008. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Papers 0807.1227, arXiv.org.
    13. Lai, Li-Hua, 2015. "Statistical premium in correlated losses of insurance," Economic Modelling, Elsevier, vol. 49(C), pages 248-253.
    14. Marri, Fouad & Furman, Edward, 2012. "Pricing compound Poisson processes with the Farlie–Gumbel–Morgenstern dependence structure," Insurance: Mathematics and Economics, Elsevier, vol. 51(1), pages 151-157.
    15. Tahir CHOULLI & Martin SCHWEIZER, 2015. "Locally Phi-Integrable Sigma-Martingale Densities for General Semimartingales," Swiss Finance Institute Research Paper Series 15-15, Swiss Finance Institute.
    16. Denuit Michel & Dhaene Jan & Goovaerts Marc & Kaas Rob & Laeven Roger, 2006. "Risk measurement with equivalent utility principles," Statistics & Risk Modeling, De Gruyter, vol. 24(1), pages 1-25, July.
    17. Choulli, Tahir & Stricker, Christophe, 2009. "Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1368-1385, April.
    18. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jrisks:v:8:y:2020:i:4:p:108-:d:431429. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.