IDEAS home Printed from https://ideas.repec.org/a/bla/mathfi/v15y2005i3p465-490.html
   My bibliography  Save this article

Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets

Author

Listed:
  • Tahir Choulli
  • Christophe Stricker

Abstract

This paper defines an optimization criterion for the set of all martingale measures for an incomplete market model when the discounted price process is bounded and quasi‐left continuous. This criterion is based on the entropy–Hellinger process for a nonnegative Doléans–Dade exponential local martingale. We develop properties of this process and establish its relationship to the relative entropy “distance.” We prove that the martingale measure, minimizing this entropy–Hellinger process, is unique. Furthermore, it exists and is explicitly determined under some mild conditions of integrability and no arbitrage. Different characterizations for this extremal risk‐neutral measure as well as immediate application to the exponential hedging are given. If the discounted price process is continuous, the minimal entropy–Hellinger martingale measure simply is the minimal martingale measure of Föllmer and Schweizer. Finally, the relationship between the minimal entropy–Hellinger martingale measure (MHM) and the minimal entropy martingale measure (MEM) is provided. We also give an example showing that in contrast to the MHM measure, the MEM measure is not robust with respect to stopping.

Suggested Citation

  • Tahir Choulli & Christophe Stricker, 2005. "Minimal Entropy–Hellinger Martingale Measure In Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 15(3), pages 465-490, July.
  • Handle: RePEc:bla:mathfi:v:15:y:2005:i:3:p:465-490
    DOI: 10.1111/j.1467-9965.2005.00229.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1467-9965.2005.00229.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1467-9965.2005.00229.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thorsten Rheinlander & Gallus Steiger, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," Papers math/0610219, arXiv.org.
    2. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
    3. Tahir Choulli & Jun Deng & Junfeng Ma, 2012. "How Non-Arbitrage, Viability and Num\'eraire Portfolio are Related," Papers 1211.4598, arXiv.org, revised Jun 2014.
    4. Tahir Choulli & Sina Yansori, 2018. "Log-optimal portfolio and num\'eraire portfolio for market models stopped at a random time," Papers 1810.12762, arXiv.org, revised Aug 2020.
    5. Henderson, Vicky & Hobson, David, 2007. "Horizon-unbiased utility functions," Stochastic Processes and their Applications, Elsevier, vol. 117(11), pages 1621-1641, November.
    6. Lioudmila Vostrikova & Yuchao Dong, 2018. "Utility maximization for L{\'e}vy switching models," Papers 1807.08982, arXiv.org.
    7. Gzyl, Henryk & Mayoral, Silvia, 2008. "Determination of risk pricing measures from market prices of risk," Insurance: Mathematics and Economics, Elsevier, vol. 43(3), pages 437-443, December.
    8. Choulli, Tahir & Stricker, Christophe, 2009. "Comparing the minimal Hellinger martingale measure of order q to the q-optimal martingale measure," Stochastic Processes and their Applications, Elsevier, vol. 119(4), pages 1368-1385, April.
    9. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    10. Tahir Choulli & Sina Yansori, 2018. "Explicit description of all deflators for market models under random horizon with applications to NFLVR," Papers 1803.10128, arXiv.org, revised Feb 2021.
    11. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    12. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    13. Dejian Tian, 2022. "Pricing principle via Tsallis relative entropy in incomplete market," Papers 2201.05316, arXiv.org, revised Oct 2022.
    14. Friedrich Hubalek & Carlo Sgarra, 2008. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Papers 0807.1227, arXiv.org.
    15. Tahir Choulli & Jun Deng & Junfeng Ma, 2015. "How non-arbitrage, viability and numéraire portfolio are related," Finance and Stochastics, Springer, vol. 19(4), pages 719-741, October.
    16. Lioudmila Vostrikova & Yuchao Dong, 2018. "Utility maximization for Lévy switching models," Working Papers hal-01844635, HAL.
    17. Smimou, K. & Bector, C.R. & Jacoby, G., 2007. "A subjective assessment of approximate probabilities with a portfolio application," Research in International Business and Finance, Elsevier, vol. 21(2), pages 134-160, June.
    18. Choulli, Tahir & Vandaele, Nele & Vanmaele, Michèle, 2010. "The Föllmer-Schweizer decomposition: Comparison and description," Stochastic Processes and their Applications, Elsevier, vol. 120(6), pages 853-872, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:bla:mathfi:v:15:y:2005:i:3:p:465-490. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.blackwellpublishing.com/journal.asp?ref=0960-1627 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.