IDEAS home Printed from https://ideas.repec.org/a/taf/quantf/v6y2006i2p125-145.html
   My bibliography  Save this article

Esscher transforms and the minimal entropy martingale measure for exponential Levy models

Author

Listed:
  • Friedrich Hubalek
  • Carlo Sgarra

Abstract

In this paper we offer a systematic survey and comparison of the Esscher martingale transform for linear processes, the Esscher martingale transform for exponential processes, and the minimal entropy martingale measure for exponential Levy models, and present some new results in order to give a complete characterization of those classes of measures. We illustrate the results with several concrete examples in detail.

Suggested Citation

  • Friedrich Hubalek & Carlo Sgarra, 2006. "Esscher transforms and the minimal entropy martingale measure for exponential Levy models," Quantitative Finance, Taylor & Francis Journals, vol. 6(2), pages 125-145.
  • Handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:125-145
    DOI: 10.1080/14697680600573099
    as

    Download full text from publisher

    File URL: http://www.tandfonline.com/doi/abs/10.1080/14697680600573099
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/14697680600573099?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Albert N. Shiryaev & Jan Kallsen, 2002. "The cumulant process and Esscher's change of measure," Finance and Stochastics, Springer, vol. 6(4), pages 397-428.
    2. Fabio Bellini & Marco Frittelli, 2002. "On the Existence of Minimax Martingale Measures," Mathematical Finance, Wiley Blackwell, vol. 12(1), pages 1-21, January.
    3. Ernst Eberlein & Jean Jacod, 1997. "On the range of options prices (*)," Finance and Stochastics, Springer, vol. 1(2), pages 131-140.
    4. Sara Biagini & Marco Frittelli, 2005. "Utility maximization in incomplete markets for unbounded processes," Finance and Stochastics, Springer, vol. 9(4), pages 493-517, October.
    5. Marco Frittelli, 2000. "The Minimal Entropy Martingale Measure and the Valuation Problem in Incomplete Markets," Mathematical Finance, Wiley Blackwell, vol. 10(1), pages 39-52, January.
    6. Thomas Goll & Ludger Rüschendorf, 2001. "Minimax and minimal distance martingale measures and their relationship to portfolio optimization," Finance and Stochastics, Springer, vol. 5(4), pages 557-581.
    7. Freddy Delbaen & Peter Grandits & Thorsten Rheinländer & Dominick Samperi & Martin Schweizer & Christophe Stricker, 2002. "Exponential Hedging and Entropic Penalties," Mathematical Finance, Wiley Blackwell, vol. 12(2), pages 99-123, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Küchler Uwe & Tappe Stefan, 2009. "Option pricing in bilateral Gamma stock models," Statistics & Risk Modeling, De Gruyter, vol. 27(4), pages 281-307, December.
    2. S. Cawston & L. Vostrikova, 2010. "$F$-divergence minimal equivalent martingale measures and optimal portfolios for exponential Levy models with a change-point," Papers 1004.3525, arXiv.org, revised Jun 2011.
    3. Constantinos Kardaras, 2009. "No‐Free‐Lunch Equivalences For Exponential Lévy Models Under Convex Constraints On Investment," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 161-187, April.
    4. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    5. Cui, Zhenyu & Kirkby, J. Lars & Nguyen, Duy, 2021. "A data-driven framework for consistent financial valuation and risk measurement," European Journal of Operational Research, Elsevier, vol. 289(1), pages 381-398.
    6. Torricelli, Lorenzo, 2020. "Trade duration risk in subdiffusive financial models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 541(C).
    7. Matthias R. Fengler & Helmut Herwartz & Christian Werner, 2012. "A Dynamic Copula Approach to Recovering the Index Implied Volatility Skew," Journal of Financial Econometrics, Oxford University Press, vol. 10(3), pages 457-493, June.
    8. Tahir Choulli & Ella Elazkany & Mich`ele Vanmaele, 2024. "The second-order Esscher martingale densities for continuous-time market models," Papers 2407.03960, arXiv.org.
    9. Laura Ballotta, 2009. "Pricing and capital requirements for with profit contracts: modelling considerations," Quantitative Finance, Taylor & Francis Journals, vol. 9(7), pages 803-817.
    10. Thorsten Rheinlander & Michael Schmutz, 2012. "Quasi self-dual exponential L\'evy processes," Papers 1201.5132, arXiv.org.
    11. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    12. Uwe Kuchler & Stefan Tappe, 2019. "Option pricing in bilateral Gamma stock models," Papers 1907.09862, arXiv.org.
    13. Khaled Salhi, 2017. "Pricing European options and risk measurement under exponential Lévy models — a practical guide," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(02n03), pages 1-36, June.
    14. Farzad Alavi Fard & Firmin Doko Tchatoka & Sivagowry Sriananthakumar, 2021. "Maximum Entropy Evaluation of Asymptotic Hedging Error under a Generalised Jump-Diffusion Model," JRFM, MDPI, vol. 14(3), pages 1-19, February.
    15. Tsukasa Fujiwara, 2009. "The Minimal Entropy Martingale Measures for Exponential Additive Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 16(1), pages 65-95, March.
    16. George Bouzianis & Lane P. Hughston, 2019. "Determination Of The Lévy Exponent In Asset Pricing Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(01), pages 1-18, February.
    17. Constantinos Kardaras, 2008. "No-Free-Lunch equivalences for exponential Levy models," Papers 0803.2169, arXiv.org.
    18. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2018. "An Equilibrium Model for Spot and Forward Prices of Commodities," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 152-180, February.
    19. Truong, Chi & Trück, Stefan, 2016. "It’s not now or never: Implications of investment timing and risk aversion on climate adaptation to extreme events," European Journal of Operational Research, Elsevier, vol. 253(3), pages 856-868.
    20. Uwe Kuchler & Stefan Tappe, 2019. "Exponential stock models driven by tempered stable processes," Papers 1907.05142, arXiv.org.
    21. Fred Espen Benth & Carlo Sgarra, 2024. "A Barndorff-Nielsen and Shephard model with leverage in Hilbert space for commodity forward markets," Finance and Stochastics, Springer, vol. 28(4), pages 1035-1076, October.
    22. Fusai, Gianluca & Meucci, Attilio, 2008. "Pricing discretely monitored Asian options under Levy processes," Journal of Banking & Finance, Elsevier, vol. 32(10), pages 2076-2088, October.
    23. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    24. Laura Ballota & Griselda Deelstra & Grégory Rayée, 2015. "Quanto Implied Correlation in a Multi-Lévy Framework," Working Papers ECARES ECARES 2015-36, ULB -- Universite Libre de Bruxelles.
    25. Lorenzo Mercuri & Fabio Bellini, 2014. "Option Pricing in a Dynamic Variance-Gamma Model," Papers 1405.7342, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tsukasa Fujiwara, 2004. "From the Minimal Entropy Martingale Measures to the Optimal Strategies for the Exponential Utility Maximization: the Case of Geometric Lévy Processes," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 11(4), pages 367-391, December.
    2. Kais Hamza & Fima C. Klebaner & Zinoviy Landsman & Ying-Oon Tan, 2014. "Option Pricing for Symmetric L\'evy Returns with Applications," Papers 1402.1554, arXiv.org.
    3. Anastasia Ellanskaya & Lioudmila Vostrikova, 2013. "Utility maximisation and utility indifference price for exponential semi-martingale models with random factor," Papers 1303.1134, arXiv.org.
    4. Thorsten Rheinländer & Jenny Sexton, 2011. "Hedging Derivatives," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 8062, August.
    5. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    6. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    7. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2015. "An equilibrium model for spot and forward prices of commodities," Papers 1502.00674, arXiv.org, revised Jan 2017.
    8. Martin Herdegen & Johannes Muhle-Karbe, 2018. "Stability of Radner equilibria with respect to small frictions," Finance and Stochastics, Springer, vol. 22(2), pages 443-502, April.
    9. Markus Hess, 2019. "Optimal Equivalent Probability Measures under Enlarged Filtrations," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 813-839, December.
    10. Kallsen Jan & Rheinländer Thorsten, 2011. "Asymptotic utility-based pricing and hedging for exponential utility," Statistics & Risk Modeling, De Gruyter, vol. 28(1), pages 17-36, March.
    11. Michail Anthropelos & Michael Kupper & Antonis Papapantoleon, 2018. "An Equilibrium Model for Spot and Forward Prices of Commodities," Mathematics of Operations Research, INFORMS, vol. 43(1), pages 152-180, February.
    12. Owari, Keita & 尾張, 圭太, 2008. "Robust Exponential Hedging and Indifference Valuation," Discussion Papers 2008-09, Graduate School of Economics, Hitotsubashi University.
    13. Rheinlander, Thorsten & Steiger, Gallus, 2006. "The minimal entropy martingale measure for general Barndorff-Nielsen/Shephard models," LSE Research Online Documents on Economics 16351, London School of Economics and Political Science, LSE Library.
    14. Guo, Ivan & Zhu, Song-Ping, 2017. "Equal risk pricing under convex trading constraints," Journal of Economic Dynamics and Control, Elsevier, vol. 76(C), pages 136-151.
    15. Mingxin Xu, 2006. "Risk measure pricing and hedging in incomplete markets," Annals of Finance, Springer, vol. 2(1), pages 51-71, January.
    16. Victor Richmond R. Jose & Robert F. Nau & Robert L. Winkler, 2008. "Scoring Rules, Generalized Entropy, and Utility Maximization," Operations Research, INFORMS, vol. 56(5), pages 1146-1157, October.
    17. Jan Bergenthum & Ludger Rüschendorf, 2006. "Comparison of Option Prices in Semimartingale Models," Finance and Stochastics, Springer, vol. 10(2), pages 222-249, April.
    18. Grzegorz Hara'nczyk & Wojciech S{l}omczy'nski & Tomasz Zastawniak, 2007. "Relative and Discrete Utility Maximising Entropy," Papers 0709.1281, arXiv.org.
    19. Keita Owari, 2011. "On Admissible Strategies in Robust Utility Maximization," Papers 1109.5512, arXiv.org, revised Mar 2012.
    20. Keita Owari, 2011. "ON ADMISSIBLE STRATEGIES IN ROBUST UTILITY MAXIMIZATION(Revised in March 2012, Forthcoming in "Mathematics and Financial Economics")," CARF F-Series CARF-F-257, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:quantf:v:6:y:2006:i:2:p:125-145. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/RQUF20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.