IDEAS home Printed from https://ideas.repec.org/a/inm/orijoc/v36y2024i2p690-704.html
   My bibliography  Save this article

An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization

Author

Listed:
  • Wei Xu

    (Research Institute for Risk Governance and Emergency Decision-Making, School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China)

  • Jie Tang

    (School of Management Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, P.R. China)

  • Ka Fai Cedric Yiu

    (Department of Applied Mathematics, Hong Kong Polytechnic University, Hong Kong 999077, P.R. China)

  • Jian Wen Peng

    (School of Mathematical Sciences, Chongqing Normal University, Chongqing 401331, P.R. China)

Abstract

This paper focuses on the cardinality constrained mean-variance portfolio optimization, in which only a small number of assets are invested. We first treat the covariance matrix of asset returns as a diagonal matrix with a special matrix processing technique. Using the dual theory, we formulate the lower bound problem of the original problem as a max-min optimization. For the inner minimization problem with the cardinality constraint, we obtain its analytical solution for the portfolio weights. Then, the lower bound problem turns out to be a simple concave optimization with respect to the Lagrangian multipliers. Thus, the interval split method and the supergradient method are developed to solve it. Based on the precise lower bound, the depth-first branch and bound method are designed to find the global optimal investment selection strategy. Compared with other lower bounds and the current popular mixed integer programming solvers, such as CPLEX and SCIP, the numerical experiments show that our method has a high searching efficiency.

Suggested Citation

  • Wei Xu & Jie Tang & Ka Fai Cedric Yiu & Jian Wen Peng, 2024. "An Efficient Global Optimal Method for Cardinality Constrained Portfolio Optimization," INFORMS Journal on Computing, INFORMS, vol. 36(2), pages 690-704, March.
  • Handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:690-704
    DOI: 10.1287/ijoc.2022.0344
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/ijoc.2022.0344
    Download Restriction: no

    File URL: https://libkey.io/10.1287/ijoc.2022.0344?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. X. Cui & X. Zheng & S. Zhu & X. Sun, 2013. "Convex relaxations and MIQCQP reformulations for a class of cardinality-constrained portfolio selection problems," Journal of Global Optimization, Springer, vol. 56(4), pages 1409-1423, August.
    2. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    3. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    4. Pierre Bonami & Miguel A. Lejeune, 2009. "An Exact Solution Approach for Integer Constrained Portfolio Optimization Problems Under Stochastic Constraints," Post-Print hal-00421756, HAL.
    5. Duan Li & Xiaoling Sun & Jun Wang, 2006. "Optimal Lot Solution To Cardinality Constrained Mean–Variance Formulation For Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 16(1), pages 83-101, January.
    6. Dimitris Bertsimas & Romy Shioda, 2009. "Algorithm for cardinality-constrained quadratic optimization," Computational Optimization and Applications, Springer, vol. 43(1), pages 1-22, May.
    7. Xiaojin Zheng & Yutong Pan & Zhaolin Hu, 2021. "Perspective Reformulations of Semicontinuous Quadratically Constrained Quadratic Programs," INFORMS Journal on Computing, INFORMS, vol. 33(1), pages 163-179, January.
    8. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    9. N. J. Jobst & M. D. Horniman & C. A. Lucas & G. Mitra, 2001. "Computational aspects of alternative portfolio selection models in the presence of discrete asset choice constraints," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 489-501.
    10. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xiaojin Zheng & Xiaoling Sun & Duan Li, 2014. "Improving the Performance of MIQP Solvers for Quadratic Programs with Cardinality and Minimum Threshold Constraints: A Semidefinite Program Approach," INFORMS Journal on Computing, INFORMS, vol. 26(4), pages 690-703, November.
    2. Xiaojin Zheng & Xiaoling Sun & Duan Li & Jie Sun, 2014. "Successive convex approximations to cardinality-constrained convex programs: a piecewise-linear DC approach," Computational Optimization and Applications, Springer, vol. 59(1), pages 379-397, October.
    3. Dimitris Bertsimas & Ryan Cory-Wright, 2022. "A Scalable Algorithm for Sparse Portfolio Selection," INFORMS Journal on Computing, INFORMS, vol. 34(3), pages 1489-1511, May.
    4. Carina Moreira Costa & Dennis Kreber & Martin Schmidt, 2022. "An Alternating Method for Cardinality-Constrained Optimization: A Computational Study for the Best Subset Selection and Sparse Portfolio Problems," INFORMS Journal on Computing, INFORMS, vol. 34(6), pages 2968-2988, November.
    5. Zhou, Zhongbao & Jin, Qianying & Xiao, Helu & Wu, Qian & Liu, Wenbin, 2018. "Estimation of cardinality constrained portfolio efficiency via segmented DEA," Omega, Elsevier, vol. 76(C), pages 28-37.
    6. Woodside-Oriakhi, M. & Lucas, C. & Beasley, J.E., 2011. "Heuristic algorithms for the cardinality constrained efficient frontier," European Journal of Operational Research, Elsevier, vol. 213(3), pages 538-550, September.
    7. Mansini, Renata & Ogryczak, Wlodzimierz & Speranza, M. Grazia, 2014. "Twenty years of linear programming based portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 518-535.
    8. Martin Branda & Max Bucher & Michal Červinka & Alexandra Schwartz, 2018. "Convergence of a Scholtes-type regularization method for cardinality-constrained optimization problems with an application in sparse robust portfolio optimization," Computational Optimization and Applications, Springer, vol. 70(2), pages 503-530, June.
    9. Nasim Dehghan Hardoroudi & Abolfazl Keshvari & Markku Kallio & Pekka Korhonen, 2017. "Solving cardinality constrained mean-variance portfolio problems via MILP," Annals of Operations Research, Springer, vol. 254(1), pages 47-59, July.
    10. Chien-Ming Chen & Joe Zhu, 2011. "Efficient Resource Allocation via Efficiency Bootstraps: An Application to R&D Project Budgeting," Operations Research, INFORMS, vol. 59(3), pages 729-741, June.
    11. Francesco Cesarone & Andrea Scozzari & Fabio Tardella, 2013. "A new method for mean-variance portfolio optimization with cardinality constraints," Annals of Operations Research, Springer, vol. 205(1), pages 213-234, May.
    12. Janusz Miroforidis, 2021. "Bounds on efficient outcomes for large-scale cardinality-constrained Markowitz problems," Journal of Global Optimization, Springer, vol. 80(3), pages 617-634, July.
    13. Ralph Steuer & Markus Hirschberger & Kalyanmoy Deb, 2016. "Extracting from the relaxed for large-scale semi-continuous variable nondominated frontiers," Journal of Global Optimization, Springer, vol. 64(1), pages 33-48, January.
    14. Tahereh Khodamoradi & Maziar Salahi & Ali Reza Najafi, 2021. "Cardinality-constrained portfolio optimization with short selling and risk-neutral interest rate," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 44(1), pages 197-214, June.
    15. Cui, Tianxiang & Du, Nanjiang & Yang, Xiaoying & Ding, Shusheng, 2024. "Multi-period portfolio optimization using a deep reinforcement learning hyper-heuristic approach," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
    16. Juan Francisco Monge, 2017. "Cardinality constrained portfolio selection via factor models," Papers 1708.02424, arXiv.org.
    17. K. Liagkouras & K. Metaxiotis, 2018. "A new efficiently encoded multiobjective algorithm for the solution of the cardinality constrained portfolio optimization problem," Annals of Operations Research, Springer, vol. 267(1), pages 281-319, August.
    18. Steuer, Ralph E. & Qi, Yue & Wimmer, Maximilian, 2024. "Computing cardinality constrained portfolio selection efficient frontiers via closest correlation matrices," European Journal of Operational Research, Elsevier, vol. 313(2), pages 628-636.
    19. Jianjun Gao & Duan Li, 2013. "Optimal Cardinality Constrained Portfolio Selection," Operations Research, INFORMS, vol. 61(3), pages 745-761, June.
    20. Lili Pan & Ziyan Luo & Naihua Xiu, 2017. "Restricted Robinson Constraint Qualification and Optimality for Cardinality-Constrained Cone Programming," Journal of Optimization Theory and Applications, Springer, vol. 175(1), pages 104-118, October.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:orijoc:v:36:y:2024:i:2:p:690-704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.