IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2405.14279.html
   My bibliography  Save this paper

Optimized Cost Per Click in Online Advertising: A Theoretical Analysis

Author

Listed:
  • Kaichen Zhang
  • Zixuan Yuan
  • Hui Xiong

Abstract

In recent years, Optimized Cost Per Click (OCPC) and Optimized Cost Per Mille (OCPM) have emerged as the most widely adopted pricing models in the online advertising industry. However, the existing literature has yet to identify the specific conditions under which these models outperform traditional pricing models like Cost Per Click (CPC) and Cost Per Action (CPA). To fill the gap, this paper builds an economic model that compares OCPC with CPC and CPA theoretically, which incorporates out-site scenarios and outside options as two key factors. Our analysis reveals that OCPC can effectively replace CPA by tackling the problem of advertisers strategically manipulating conversion reporting in out-site scenarios where conversions occur outside the advertising platform. Furthermore, OCPC exhibits the potential to surpass CPC in platform payoffs by providing higher advertiser payoffs and consequently attracting more advertisers. However, if advertisers have less competitive outside options and consistently stay in the focal platform, the platform may achieve higher payoffs using CPC. Our findings deliver valuable insights for online advertising platforms in selecting optimal pricing models, and provide recommendations for further enhancing their payoffs. To the best of our knowledge, this is the first study to analyze OCPC from an economic perspective. Moreover, our analysis can be applied to the OCPM model as well.

Suggested Citation

  • Kaichen Zhang & Zixuan Yuan & Hui Xiong, 2024. "Optimized Cost Per Click in Online Advertising: A Theoretical Analysis," Papers 2405.14279, arXiv.org.
  • Handle: RePEc:arx:papers:2405.14279
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2405.14279
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Benjamin Edelman & Michael Ostrovsky & Michael Schwarz, 2007. "Internet Advertising and the Generalized Second-Price Auction: Selling Billions of Dollars Worth of Keywords," American Economic Review, American Economic Association, vol. 97(1), pages 242-259, March.
    2. Yu (Jeffrey) Hu & Jiwoong Shin & Zhulei Tang, 2016. "Incentive Problems in Performance-Based Online Advertising Pricing: Cost per Click vs. Cost per Action," Management Science, INFORMS, vol. 62(7), pages 2022-2038, July.
    3. Yi Zhu & Kenneth C. Wilbur, 2011. "Hybrid Advertising Auctions," Marketing Science, INFORMS, vol. 30(2), pages 249-273, 03-04.
    4. William Vickrey, 1961. "Counterspeculation, Auctions, And Competitive Sealed Tenders," Journal of Finance, American Finance Association, vol. 16(1), pages 8-37, March.
    5. Xiaoyong Cao & Guoqiang Tian, 2013. "Second‐Price Auctions with Different Participation Costs," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 22(1), pages 184-205, March.
    6. Levin, Dan & Smith, James L, 1994. "Equilibrium in Auctions with Entry," American Economic Review, American Economic Association, vol. 84(3), pages 585-599, June.
    7. Kursad Asdemir & Nanda Kumar & Varghese S. Jacob, 2012. "Pricing Models for Online Advertising: CPM vs. CPC," Information Systems Research, INFORMS, vol. 23(3-part-1), pages 804-822, September.
    8. Roger B. Myerson, 1981. "Optimal Auction Design," Mathematics of Operations Research, INFORMS, vol. 6(1), pages 58-73, February.
    9. Kirchkamp, Oliver & Poen, Eva & Rei, J. Philipp, 2009. "Outside options: Another reason to choose the first-price auction," European Economic Review, Elsevier, vol. 53(2), pages 153-169, February.
    10. Edward Clarke, 1971. "Multipart pricing of public goods," Public Choice, Springer, vol. 11(1), pages 17-33, September.
    11. Nikhil Agarwal & Susan Athey & David Yang, 2009. "Skewed Bidding in Pay-per-Action Auctions for Online Advertising," American Economic Review, American Economic Association, vol. 99(2), pages 441-447, May.
    12. Todd Kaplan & Aner Sela, 2022. "Second-Price Auctions with Private Entry Costs," Games, MDPI, vol. 13(5), pages 1-14, September.
    13. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lorentziadis, Panos L., 2016. "Optimal bidding in auctions from a game theory perspective," European Journal of Operational Research, Elsevier, vol. 248(2), pages 347-371.
    2. Thomas W. Frick & Rodrigo Belo & Rahul Telang, 2023. "Incentive Misalignments in Programmatic Advertising: Evidence from a Randomized Field Experiment," Management Science, INFORMS, vol. 69(3), pages 1665-1686, March.
    3. Yu (Jeffrey) Hu & Jiwoong Shin & Zhulei Tang, 2016. "Incentive Problems in Performance-Based Online Advertising Pricing: Cost per Click vs. Cost per Action," Management Science, INFORMS, vol. 62(7), pages 2022-2038, July.
    4. Yi Zhu & Kenneth C. Wilbur, 2011. "Hybrid Advertising Auctions," Marketing Science, INFORMS, vol. 30(2), pages 249-273, 03-04.
    5. Karthik Kannan & Rajib L. Saha & Warut Khern-am-nuai, 2022. "Identifying Perverse Incentives in Buyer Profiling on Online Trading Platforms," Information Systems Research, INFORMS, vol. 33(2), pages 464-475, June.
    6. Scott Duke Kominers & Alexander Teytelboym & Vincent P Crawford, 2017. "An invitation to market design," Oxford Review of Economic Policy, Oxford University Press and Oxford Review of Economic Policy Limited, vol. 33(4), pages 541-571.
    7. Philippe Jehiel & Laurent Lamy, 2020. "On the Benefits of Set-Asides," Journal of the European Economic Association, European Economic Association, vol. 18(4), pages 1655-1696.
    8. Philippe Jehiel & Laurent Lamy, 2018. "A Mechanism Design Approach to the Tiebout Hypothesis," Journal of Political Economy, University of Chicago Press, vol. 126(2), pages 735-760.
    9. Axel Ockenfels & David Reiley & Abdolkarim Sadrieh, 2006. "Online Auctions," NBER Working Papers 12785, National Bureau of Economic Research, Inc.
    10. Todd Kaplan & Aner Sela, 2022. "Second-Price Auctions with Private Entry Costs," Games, MDPI, vol. 13(5), pages 1-14, September.
    11. W. Jason Choi & Amin Sayedi, 2019. "Learning in Online Advertising," Marketing Science, INFORMS, vol. 38(4), pages 584-608, July.
    12. Ivanova-Stenzel, Radosveta & Salmon, Timothy C., 2008. "Revenue equivalence revisited," Games and Economic Behavior, Elsevier, vol. 64(1), pages 171-192, September.
    13. Maria-Florina Balcan & Siddharth Prasad & Tuomas Sandholm, 2023. "Bicriteria Multidimensional Mechanism Design with Side Information," Papers 2302.14234, arXiv.org, revised Oct 2024.
    14. Michael Ostrovsky & Michael Schwarz, 2023. "Reserve Prices in Internet Advertising Auctions: A Field Experiment," Journal of Political Economy, University of Chicago Press, vol. 131(12), pages 3352-3376.
    15. Committee, Nobel Prize, 2020. "Improvements to auction theory and inventions of new auction formats," Nobel Prize in Economics documents 2020-2, Nobel Prize Committee.
    16. Jeong, Seungwon (Eugene) & Lee, Joosung, 2024. "The groupwise-pivotal referral auction: Core-selecting referral strategy-proof mechanism," Games and Economic Behavior, Elsevier, vol. 143(C), pages 191-203.
    17. Patrick Hummel, 2018. "Hybrid mechanisms for Vickrey–Clarke–Groves and generalized second-price bids," International Journal of Game Theory, Springer;Game Theory Society, vol. 47(1), pages 331-350, March.
    18. Hana Choi & Carl F. Mela & Santiago R. Balseiro & Adam Leary, 2020. "Online Display Advertising Markets: A Literature Review and Future Directions," Information Systems Research, INFORMS, vol. 31(2), pages 556-575, June.
    19. Seiji Takanashi & Takehiro Kawasaki & Taiki Todo & Makoto Yokoo, 2019. "Efficiency in Truthful Auctions via a Social Network," Papers 1904.12422, arXiv.org.
    20. Yukun Cheng & Xiaotie Deng & Dominik Scheder, 2022. "Recent studies of agent incentives in internet resource allocation and pricing," Annals of Operations Research, Springer, vol. 314(1), pages 49-76, July.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.14279. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.