Review of deep learning models for crypto price prediction: implementation and evaluation
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Satyajit Bose & Guo Dong & Anne Simpson, 2019. "The Financial Ecosystem," Palgrave Studies in Impact Finance, Palgrave Macmillan, number 978-3-030-05624-7, February.
- Ao Kong & Hongliang Zhu & Robert Azencott, 2021. "Predicting intraday jumps in stock prices using liquidity measures and technical indicators," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 40(3), pages 416-438, April.
- Plakandaras, Vasilios & Papadimitriou, Theophilos & Gogas, Periklis & Diamantaras, Konstantinos, 2015.
"Market sentiment and exchange rate directional forecasting,"
Algorithmic Finance, IOS Press, vol. 4(1-2), pages 69-79.
- Vasilios Plakandaras & Theophilos Papadimitriou & Periklis Gogas & Konstantinos Diamantaras, 2014. "Market Sentiment and Exchange Rate Directional Forecasting," Working Paper series 37_14, Rimini Centre for Economic Analysis.
- Cross, Jamie L. & Hou, Chenghan & Trinh, Kelly, 2021. "Returns, volatility and the cryptocurrency bubble of 2017–18," Economic Modelling, Elsevier, vol. 104(C).
- Mr. Marco Gross & Christoph Siebenbrunner, 2019. "Money Creation in Fiat and Digital Currency Systems," IMF Working Papers 2019/285, International Monetary Fund.
- Schnaubelt, Matthias, 2022. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," European Journal of Operational Research, Elsevier, vol. 296(3), pages 993-1006.
- Evrim Mandaci, Pinar & Cagli, Efe Caglar, 2022. "Herding intensity and volatility in cryptocurrency markets during the COVID-19," Finance Research Letters, Elsevier, vol. 46(PB).
- Elendner, Hermann & Trimborn, Simon & Ong, Bobby & Lee, Teik Ming, 2016. "The cross-section of crypto-currencies as financial assets: An overview," SFB 649 Discussion Papers 2016-038, Humboldt University Berlin, Collaborative Research Center 649: Economic Risk.
- D’Amato, Valeria & Levantesi, Susanna & Piscopo, Gabriella, 2022. "Deep learning in predicting cryptocurrency volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 596(C).
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Yhlas Sovbetov, 2018.
"Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero,"
Journal of Economics and Financial Analysis, Tripal Publishing House, vol. 2(2), pages 1-27.
- Sovbetov, Yhlas, 2018. "Factors Influencing Cryptocurrency Prices: Evidence from Bitcoin, Ethereum, Dash, Litcoin, and Monero," MPRA Paper 85036, University Library of Munich, Germany.
- Kamwoo Lee & Sinan Ulkuatam & Peter Beling & William Scherer, 2018. "Generating Synthetic Bitcoin Transactions and Predicting Market Price Movement Via Inverse Reinforcement Learning and Agent-Based Modeling," Journal of Artificial Societies and Social Simulation, Journal of Artificial Societies and Social Simulation, vol. 21(3), pages 1-5.
- Corbet, Shaen & Lucey, Brian & Yarovaya, Larisa, 2018. "Datestamping the Bitcoin and Ethereum bubbles," Finance Research Letters, Elsevier, vol. 26(C), pages 81-88.
- Abel Brodeur & David Gray & Anik Islam & Suraiya Bhuiyan, 2021.
"A literature review of the economics of COVID‐19,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(4), pages 1007-1044, September.
- Brodeur, Abel & Gray, David M. & Islam, Anik & Bhuiyan, Suraiya Jabeen, 2020. "A Literature Review of the Economics of COVID-19," IZA Discussion Papers 13411, Institute of Labor Economics (IZA).
- Brodeur, Abel & Gray, David & Islam, Anik & Bhuiyan, Suraiya Jabeen, 2020. "A Literature Review of the Economics of COVID-19," GLO Discussion Paper Series 601, Global Labor Organization (GLO).
- Abel Brodeur & Suraiya Bhuyian & Anik Islam & David Gray, 2021. "A Literature Review of the Economics of COVID-19," Working Papers 2103E, University of Ottawa, Department of Economics.
- Mahsa Tavakoli & Rohitash Chandra & Fengrui Tian & Cristi'an Bravo, 2023. "Multi-Modal Deep Learning for Credit Rating Prediction Using Text and Numerical Data Streams," Papers 2304.10740, arXiv.org, revised Nov 2024.
- Nikolaos A. Kyriazis, 2019. "A Survey on Empirical Findings about Spillovers in Cryptocurrency Markets," JRFM, MDPI, vol. 12(4), pages 1-17, November.
- Jeffrey Frankel & Ben Smit & Federico Sturzenegger, 2008. "Fiscal and monetary policy in a commodity‐based economy1," The Economics of Transition, The European Bank for Reconstruction and Development, vol. 16(4), pages 679-713, October.
- Jin‐Chuan Duan, 1995. "The Garch Option Pricing Model," Mathematical Finance, Wiley Blackwell, vol. 5(1), pages 13-32, January.
- Yen, Kuang-Chieh & Cheng, Hui-Pei, 2021. "Economic policy uncertainty and cryptocurrency volatility," Finance Research Letters, Elsevier, vol. 38(C).
- Wei, Yu & Wang, Yizhi & Lucey, Brian M. & Vigne, Samuel A., 2023. "Cryptocurrency uncertainty and volatility forecasting of precious metal futures markets," Journal of Commodity Markets, Elsevier, vol. 29(C).
- Goutte, Stéphane & Le, Hoang-Viet & Liu, Fei & von Mettenheim, Hans-Jörg, 2023.
"Deep learning and technical analysis in cryptocurrency market,"
Finance Research Letters, Elsevier, vol. 54(C).
- Stéphane Goutte & Viet Hoang Le & Fei Liu & Hans-Jörg Mettenheim, Von, 2023. "Deep Learning And Technical Analysis In Cryptocurrency Market," Working Papers halshs-03917333, HAL.
- James H. Stock & Mark W. Watson, 2001. "Vector Autoregressions," Journal of Economic Perspectives, American Economic Association, vol. 15(4), pages 101-115, Fall.
- Jiang, Yonghong & Nie, He & Ruan, Weihua, 2018. "Time-varying long-term memory in Bitcoin market," Finance Research Letters, Elsevier, vol. 25(C), pages 280-284.
- Lahmiri, Salim & Bekiros, Stelios, 2019. "Cryptocurrency forecasting with deep learning chaotic neural networks," Chaos, Solitons & Fractals, Elsevier, vol. 118(C), pages 35-40.
- Sergey Nasekin & Cathy Yi-Hsuan Chen, 2020. "Deep learning-based cryptocurrency sentiment construction," Digital Finance, Springer, vol. 2(1), pages 39-67, September.
- Yin, Libo & Nie, Jing & Han, Liyan, 2021. "Understanding cryptocurrency volatility: The role of oil market shocks," International Review of Economics & Finance, Elsevier, vol. 72(C), pages 233-253.
- Feng Ma & Chao Liang & Yuanhui Ma & M.I.M. Wahab, 2020. "Cryptocurrency volatility forecasting: A Markov regime‐switching MIDAS approach," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 39(8), pages 1277-1290, December.
- Satyajit Bose & Guo Dong & Anne Simpson, 2019. "The Financial Ecosystem," Palgrave Studies in Impact Finance, in: The Financial Ecosystem, chapter 0, pages 19-46, Palgrave Macmillan.
- Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
- Milkau, Udo & Bott, Jürgen, 2015. "Digitalisation in payments: From interoperability to centralised models?," Journal of Payments Strategy & Systems, Henry Stewart Publications, vol. 9(3), pages 321-340, September.
- Kate Murray & Andrea Rossi & Diego Carraro & Andrea Visentin, 2023. "On Forecasting Cryptocurrency Prices: A Comparison of Machine Learning, Deep Learning, and Ensembles," Forecasting, MDPI, vol. 5(1), pages 1-14, January.
- Satyajit Bose & Guo Dong & Anne Simpson, 2019. "Conservation Finance and Payment for Ecosystem Services," Palgrave Studies in Impact Finance, in: The Financial Ecosystem, chapter 0, pages 311-338, Palgrave Macmillan.
- Fabian Woebbeking, 2021. "Cryptocurrency volatility markets," Digital Finance, Springer, vol. 3(3), pages 273-298, December.
- Boyd, John H. & Levine, Ross & Smith, Bruce D., 2001. "The impact of inflation on financial sector performance," Journal of Monetary Economics, Elsevier, vol. 47(2), pages 221-248, April.
- Fischer, Thomas & Krauss, Christopher, 2018. "Deep learning with long short-term memory networks for financial market predictions," European Journal of Operational Research, Elsevier, vol. 270(2), pages 654-669.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Jimmy Cheung & Smruthi Rangarajan & Amelia Maddocks & Xizhe Chen & Rohitash Chandra, 2024. "Quantile deep learning models for multi-step ahead time series prediction," Papers 2411.15674, arXiv.org.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ahmed, Mohamed Shaker & El-Masry, Ahmed A. & Al-Maghyereh, Aktham I. & Kumar, Satish, 2024. "Cryptocurrency volatility: A review, synthesis, and research agenda," Research in International Business and Finance, Elsevier, vol. 71(C).
- Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019.
"The effects of markets, uncertainty and search intensity on bitcoin returns,"
International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
- Theodore Panagiotidis & Thanasis Stengos & Orestis Vravosinos, 2018. "The effects of markets, uncertainty and search intensity on bitcoin returns," Working Paper series 18-39, Rimini Centre for Economic Analysis.
- Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
- Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
- Manahov, Viktor & Urquhart, Andrew, 2021. "The efficiency of Bitcoin: A strongly typed genetic programming approach to smart electronic Bitcoin markets," International Review of Financial Analysis, Elsevier, vol. 73(C).
- Eska, Fabian E. & Shi, Yanghua & Theissen, Erik & Uhrig-Homburg, Marliese, 2024. "Do design features explain the volatility of cryptocurrencies?," Finance Research Letters, Elsevier, vol. 66(C).
- Kumar Kulbhaskar, Anamika & Subramaniam, Sowmya, 2023. "Breaking news headlines: Impact on trading activity in the cryptocurrency market," Economic Modelling, Elsevier, vol. 126(C).
- Cheng, Jiyang & Tiwari, Sunil & Khaled, Djebbouri & Mahendru, Mandeep & Shahzad, Umer, 2024. "Forecasting Bitcoin prices using artificial intelligence: Combination of ML, SARIMA, and Facebook Prophet models," Technological Forecasting and Social Change, Elsevier, vol. 198(C).
- Muntasir Murshed & Kashif Abbass & Seemran Rashid, 2021. "Modelling renewable energy adoption across south Asian economies: Empirical evidence from Bangladesh, India, Pakistan and Sri Lanka," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5425-5450, October.
- Fan Fang & Carmine Ventre & Michail Basios & Leslie Kanthan & David Martinez-Rego & Fan Wu & Lingbo Li, 2022. "Cryptocurrency trading: a comprehensive survey," Financial Innovation, Springer;Southwestern University of Finance and Economics, vol. 8(1), pages 1-59, December.
- Rico-Peña, Juan Jesús & Arguedas-Sanz, Raquel & López-Martin, Carmen, 2023. "Models used to characterise blockchain features. A systematic literature review and bibliometric analysis," Technovation, Elsevier, vol. 123(C).
- Gradojevic, Nikola & Kukolj, Dragan & Adcock, Robert & Djakovic, Vladimir, 2023. "Forecasting Bitcoin with technical analysis: A not-so-random forest?," International Journal of Forecasting, Elsevier, vol. 39(1), pages 1-17.
- Shao, Zhen & Zheng, Qingru & Yang, Shanlin & Gao, Fei & Cheng, Manli & Zhang, Qiang & Liu, Chen, 2020. "Modeling and forecasting the electricity clearing price: A novel BELM based pattern classification framework and a comparative analytic study on multi-layer BELM and LSTM," Energy Economics, Elsevier, vol. 86(C).
- Ata Assaf & Luis Alberiko Gil-Alana & Khaled Mokni, 2022. "True or spurious long memory in the cryptocurrency markets: evidence from a multivariate test and other Whittle estimation methods," Empirical Economics, Springer, vol. 63(3), pages 1543-1570, September.
- Giacomo di Tollo & Joseph Andria & Gianni Filograsso, 2023. "The Predictive Power of Social Media Sentiment: Evidence from Cryptocurrencies and Stock Markets Using NLP and Stochastic ANNs," Mathematics, MDPI, vol. 11(16), pages 1-18, August.
- Aurelio F. Bariviera & Ignasi Merediz‐Solà, 2021.
"Where Do We Stand In Cryptocurrencies Economic Research? A Survey Based On Hybrid Analysis,"
Journal of Economic Surveys, Wiley Blackwell, vol. 35(2), pages 377-407, April.
- Aurelio F. Bariviera & Ignasi Merediz-Sol`a, 2020. "Where do we stand in cryptocurrencies economic research? A survey based on hybrid analysis," Papers 2003.09723, arXiv.org.
- Pierre J. Venter & Eben Maré, 2020. "GARCH Generated Volatility Indices of Bitcoin and CRIX," JRFM, MDPI, vol. 13(6), pages 1-15, June.
- Sun, Xiaolei & Liu, Mingxi & Sima, Zeqian, 2020. "A novel cryptocurrency price trend forecasting model based on LightGBM," Finance Research Letters, Elsevier, vol. 32(C).
- Dimitrios Koutmos, 2023. "Investor sentiment and bitcoin prices," Review of Quantitative Finance and Accounting, Springer, vol. 60(1), pages 1-29, January.
- Kingstone Nyakurukwa & Yudhvir Seetharam, 2023. "Higher moment connectedness of cryptocurrencies: a time-frequency approach," Journal of Economics and Finance, Springer;Academy of Economics and Finance, vol. 47(3), pages 793-814, September.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-BIG-2024-06-24 (Big Data)
- NEP-CMP-2024-06-24 (Computational Economics)
- NEP-FMK-2024-06-24 (Financial Markets)
- NEP-FOR-2024-06-24 (Forecasting)
- NEP-PAY-2024-06-24 (Payment Systems and Financial Technology)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2405.11431. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.