IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2411.15674.html
   My bibliography  Save this paper

Quantile deep learning models for multi-step ahead time series prediction

Author

Listed:
  • Jimmy Cheung
  • Smruthi Rangarajan
  • Amelia Maddocks
  • Xizhe Chen
  • Rohitash Chandra

Abstract

Uncertainty quantification is crucial in time series prediction, and quantile regression offers a valuable mechanism for uncertainty quantification which is useful for extreme value forecasting. Although deep learning models have been prominent in multi-step ahead prediction, the development and evaluation of quantile deep learning models have been limited. We present a novel quantile regression deep learning framework for multi-step time series prediction. In this way, we elevate the capabilities of deep learning models by incorporating quantile regression, thus providing a more nuanced understanding of predictive values. We provide an implementation of prominent deep learning models for multi-step ahead time series prediction and evaluate their performance under high volatility and extreme conditions. We include multivariate and univariate modelling, strategies and provide a comparison with conventional deep learning models from the literature. Our models are tested on two cryptocurrencies: Bitcoin and Ethereum, using daily close-price data and selected benchmark time series datasets. The results show that integrating a quantile loss function with deep learning provides additional predictions for selected quantiles without a loss in the prediction accuracy when compared to the literature. Our quantile model has the ability to handle volatility more effectively and provides additional information for decision-making and uncertainty quantification through the use of quantiles when compared to conventional deep learning models.

Suggested Citation

  • Jimmy Cheung & Smruthi Rangarajan & Amelia Maddocks & Xizhe Chen & Rohitash Chandra, 2024. "Quantile deep learning models for multi-step ahead time series prediction," Papers 2411.15674, arXiv.org.
  • Handle: RePEc:arx:papers:2411.15674
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2411.15674
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Roger Koenker, 2017. "Quantile Regression: 40 Years On," Annual Review of Economics, Annual Reviews, vol. 9(1), pages 155-176, September.
    2. Bali, Turan G., 2003. "The generalized extreme value distribution," Economics Letters, Elsevier, vol. 79(3), pages 423-427, June.
    3. Jingyang Wu & Xinyi Zhang & Fangyixuan Huang & Haochen Zhou & Rohtiash Chandra, 2024. "Review of deep learning models for crypto price prediction: implementation and evaluation," Papers 2405.11431, arXiv.org, revised Jun 2024.
    4. Buchinsky, Moshe, 1994. "Changes in the U.S. Wage Structure 1963-1987: Application of Quantile Regression," Econometrica, Econometric Society, vol. 62(2), pages 405-458, March.
    5. Cumperayot, Phornchanok & Kouwenberg, Roy, 2013. "Early warning systems for currency crises: A multivariate extreme value approach," Journal of International Money and Finance, Elsevier, vol. 36(C), pages 151-171.
    6. Wang, Yijun & Andreeva, Galina & Martin-Barragan, Belen, 2023. "Machine learning approaches to forecasting cryptocurrency volatility: Considering internal and external determinants," International Review of Financial Analysis, Elsevier, vol. 90(C).
    7. Jia, Yichen & Jeong, Jong-Hyeon, 2022. "Deep learning for quantile regression under right censoring: DeepQuantreg," Computational Statistics & Data Analysis, Elsevier, vol. 165(C).
    8. Koenker, Roger, 2004. "Quantile regression for longitudinal data," Journal of Multivariate Analysis, Elsevier, vol. 91(1), pages 74-89, October.
    9. Schaumburg, Julia, 2012. "Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4081-4096.
    10. Cai, Zongwu, 2002. "Regression Quantiles For Time Series," Econometric Theory, Cambridge University Press, vol. 18(1), pages 169-192, February.
    11. Tillaguango, Brayan & Hossain, Mohammad Razib & Cuesta, Lizeth & Ahmad, Munir & Alvarado, Rafael & Murshed, Muntasir & Rehman, Abdul & Işık, Cem, 2024. "Impact of oil price, economic globalization, and inflation on economic output: Evidence from Latin American oil-producing countries using the quantile-on-quantile approach," Energy, Elsevier, vol. 302(C).
    12. Chou, Ray Yeutien, 2005. "Forecasting Financial Volatilities with Extreme Values: The Conditional Autoregressive Range (CARR) Model," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 37(3), pages 561-582, June.
    13. Rohitash Chandra & Yixuan He, 2021. "Bayesian neural networks for stock price forecasting before and during COVID-19 pandemic," PLOS ONE, Public Library of Science, vol. 16(7), pages 1-32, July.
    14. Roger Koenker, 2017. "Quantile regression 40 years on," CeMMAP working papers 36/17, Institute for Fiscal Studies.
    15. Takvor Soukissian & Christos Tsalis, 2015. "The effect of the generalized extreme value distribution parameter estimation methods in extreme wind speed prediction," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 78(3), pages 1777-1809, September.
    16. Bruno Merz & Annegret Thieken, 2009. "Flood risk curves and uncertainty bounds," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 51(3), pages 437-458, December.
    17. Huang Xing & Song Junyi & Huidong Jin, 2020. "The casualty prediction of earthquake disaster based on Extreme Learning Machine method," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 102(3), pages 873-886, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Quantile Random-Coefficient Regression with Interactive Fixed Effects: Heterogeneous Group-Level Policy Evaluation," Papers 2208.03632, arXiv.org, revised Nov 2024.
    2. Mingshu Li & Bhaskarjit Sarmah & Dhruv Desai & Joshua Rosaler & Snigdha Bhagat & Philip Sommer & Dhagash Mehta, 2024. "Quantile Regression using Random Forest Proximities," Papers 2408.02355, arXiv.org.
    3. Ruofan Xu & Jiti Gao & Tatsushi Oka & Yoon-Jae Whang, 2022. "Estimation of Heterogeneous Treatment Effects Using Quantile Regression with Interactive Fixed Effects," Monash Econometrics and Business Statistics Working Papers 13/22, Monash University, Department of Econometrics and Business Statistics.
    4. Gareth W. Peters, 2018. "General Quantile Time Series Regressions for Applications in Population Demographics," Risks, MDPI, vol. 6(3), pages 1-47, September.
    5. Graham, Bryan S. & Hahn, Jinyong & Poirier, Alexandre & Powell, James L., 2018. "A quantile correlated random coefficients panel data model," Journal of Econometrics, Elsevier, vol. 206(2), pages 305-335.
    6. Chen, Zhao & Cheng, Vivian Xinyi & Liu, Xu, 2024. "Reprint: Hypothesis testing on high dimensional quantile regression," Journal of Econometrics, Elsevier, vol. 239(2).
    7. Chong-Chuo Chang & Oshamah Lin Lin & Oshamah Yu-Cheng Chang & Oshamah Kun-Zhan Hsu, 2023. "Impact of Financial Liberalization on Firm Risk," Advances in Decision Sciences, Asia University, Taiwan, vol. 27(3), pages 14-45, September.
    8. Xiaorong Yang & Jia Chen & Degui Li & Runze Li, 2024. "Functional-Coefficient Quantile Regression for Panel Data with Latent Group Structure," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 1026-1040, July.
    9. Damian Clarke & Manuel Llorca Jaña & Daniel Pailañir, 2023. "The use of quantile methods in economic history," Historical Methods: A Journal of Quantitative and Interdisciplinary History, Taylor & Francis Journals, vol. 56(2), pages 115-132, April.
    10. Wang, Xuqin & Li, Muyi, 2023. "Bootstrapping the transformed goodness-of-fit test on heavy-tailed GARCH models," Computational Statistics & Data Analysis, Elsevier, vol. 184(C).
    11. Antecol, Heather & Eren, Ozkan & Ozbeklik, Serkan, 2013. "The effect of Teach for America on the distribution of student achievement in primary school: Evidence from a randomized experiment," Economics of Education Review, Elsevier, vol. 37(C), pages 113-125.
    12. Sulkhan Chavleishvili & Simone Manganelli, 2024. "Forecasting and stress testing with quantile vector autoregression," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 39(1), pages 66-85, January.
    13. Paniagua, Jordi & Figueiredo, Erik & Sapena, Juan, 2015. "Quantile regression for the FDI gravity equation," Journal of Business Research, Elsevier, vol. 68(7), pages 1512-1518.
    14. Jingyang Wu & Xinyi Zhang & Fangyixuan Huang & Haochen Zhou & Rohtiash Chandra, 2024. "Review of deep learning models for crypto price prediction: implementation and evaluation," Papers 2405.11431, arXiv.org, revised Jun 2024.
    15. Chen, Le-Yu & Lee, Sokbae, 2023. "Sparse quantile regression," Journal of Econometrics, Elsevier, vol. 235(2), pages 2195-2217.
    16. Trinh, Long Quang & Doan, Ha Thi Thanh, 2018. "Internationalization and the growth of Vietnamese micro, small, and medium sized enterprises: Evidence from panel quantile regressions," Journal of Asian Economics, Elsevier, vol. 55(C), pages 71-83.
    17. Bakouan, Pousseni & Sawadogo, Relwendé, 2024. "BioTrade and income inequality: Does frontier technology readiness matter?," Structural Change and Economic Dynamics, Elsevier, vol. 70(C), pages 650-665.
    18. David Powell & Joachim Wagner, 2021. "The Exporter Productivity Premium Along the Productivity Distribution: Evidence from Quantile Regression with Nonadditive Firm Fixed Effects," World Scientific Book Chapters, in: Joachim Wagner (ed.), MICROECONOMETRIC STUDIES OF FIRMS’ IMPORTS AND EXPORTS Advanced Methods of Analysis and Evidence from German Enterprises, chapter 9, pages 121-149, World Scientific Publishing Co. Pte. Ltd..
    19. Jayeeta Bhattacharya, 2020. "Quantile regression with generated dependent variable and covariates," Papers 2012.13614, arXiv.org.
    20. Zhou, Hao & Zheng, Mingbo, 2024. "Foreign direct investment and green innovation in China: An examination of quantile regression," Innovation and Green Development, Elsevier, vol. 3(3).

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2411.15674. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.