Towards Generalizing Inferences from Trials to Target Populations
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Ashley L. Buchanan & Michael G. Hudgens & Stephen R. Cole & Katie R. Mollan & Paul E. Sax & Eric S. Daar & Adaora A. Adimora & Joseph J. Eron & Michael J. Mugavero, 2018. "Generalizing evidence from randomized trials using inverse probability of sampling weights," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 181(4), pages 1193-1209, October.
- Robert B. Olsen & Larry L. Orr & Stephen H. Bell & Elizabeth A. Stuart, 2013. "External Validity in Policy Evaluations That Choose Sites Purposively," Journal of Policy Analysis and Management, John Wiley & Sons, Ltd., vol. 32(1), pages 107-121, January.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2018.
"Double/debiased machine learning for treatment and structural parameters,"
Econometrics Journal, Royal Economic Society, vol. 21(1), pages 1-68, February.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney Newey & James Robins, 2017. "Double/Debiased Machine Learning for Treatment and Structural Parameters," NBER Working Papers 23564, National Bureau of Economic Research, Inc.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers CWP28/17, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Victor Chernozhukov & Denis Chetverikov & Mert Demirer & Esther Duflo & Christian Hansen & Whitney K. Newey & James Robins, 2017. "Double/debiased machine learning for treatment and structural parameters," CeMMAP working papers 28/17, Institute for Fiscal Studies.
- Issa J. Dahabreh & Sarah E. Robertson & Lucia C. Petito & Miguel A. Hernán & Jon A. Steingrimsson, 2023. "Efficient and robust methods for causally interpretable meta‐analysis: Transporting inferences from multiple randomized trials to a target population," Biometrics, The International Biometric Society, vol. 79(2), pages 1057-1072, June.
- Miratrix, Luke W. & Sekhon, Jasjeet S. & Theodoridis, Alexander G. & Campos, Luis F., 2018. "Worth Weighting? How to Think About and Use Weights in Survey Experiments," Political Analysis, Cambridge University Press, vol. 26(3), pages 275-291, July.
- Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
- Issa J. Dahabreh & Sarah E. Robertson & Eric J. Tchetgen & Elizabeth A. Stuart & Miguel A. Hernán, 2019. "Generalizing causal inferences from individuals in randomized trials to all trial‐eligible individuals," Biometrics, The International Biometric Society, vol. 75(2), pages 685-694, June.
- Harsh Parikh & Marco Morucci & Vittorio Orlandi & Sudeepa Roy & Cynthia Rudin & Alexander Volfovsky, 2023. "A Double Machine Learning Approach to Combining Experimental and Observational Data," Papers 2307.01449, arXiv.org, revised Apr 2024.
- Kosuke Imai & Gary King & Elizabeth A. Stuart, 2008. "Misunderstandings between experimentalists and observationalists about causal inference," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 171(2), pages 481-502, April.
- Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Naoki Egami & Erin Hartman, 2021. "Covariate selection for generalizing experimental results: Application to a large‐scale development program in Uganda," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 184(4), pages 1524-1548, October.
- Wendy Chan, 2018. "Applications of Small Area Estimation to Generalization With Subclassification by Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 182-224, April.
- Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
- Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
- Dasom Lee & Shu Yang & Lin Dong & Xiaofei Wang & Donglin Zeng & Jianwen Cai, 2023. "Improving trial generalizability using observational studies," Biometrics, The International Biometric Society, vol. 79(2), pages 1213-1225, June.
- Elizabeth A. Stuart & Anna Rhodes, 2017. "Generalizing Treatment Effect Estimates From Sample to Population: A Case Study in the Difficulties of Finding Sufficient Data," Evaluation Review, , vol. 41(4), pages 357-388, August.
- Elizabeth Tipton & Kelly Hallberg & Larry V. Hedges & Wendy Chan, 2017. "Implications of Small Samples for Generalization: Adjustments and Rules of Thumb," Evaluation Review, , vol. 41(5), pages 472-505, October.
- Sarah E. Robertson & Jon A. Steingrimsson & Issa J. Dahabreh, 2024. "Cluster Randomized Trials Designed to Support Generalizable Inferences," Evaluation Review, , vol. 48(6), pages 1088-1114, December.
- Rui Chen & Guanhua Chen & Menggang Yu, 2023. "Entropy balancing for causal generalization with target sample summary information," Biometrics, The International Biometric Society, vol. 79(4), pages 3179-3190, December.
- Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
- repec:mpr:mprres:8128 is not listed on IDEAS
- Masahiro Kato & Masatoshi Uehara & Shota Yasui, 2020. "Off-Policy Evaluation and Learning for External Validity under a Covariate Shift," Papers 2002.11642, arXiv.org, revised Oct 2020.
- Nicole E. Pashley & Luke W. Miratrix, 2021. "Insights on Variance Estimation for Blocked and Matched Pairs Designs," Journal of Educational and Behavioral Statistics, , vol. 46(3), pages 271-296, June.
- Nicole E. Pashley & Luke W. Miratrix, 2022. "Block What You Can, Except When You Shouldn’t," Journal of Educational and Behavioral Statistics, , vol. 47(1), pages 69-100, February.
- Uehleke, Reinhard & Petrick, Martin & Hüttel, Silke, 2022. "Evaluations of agri-environmental schemes based on observational farm data: The importance of covariate selection," Land Use Policy, Elsevier, vol. 114(C).
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018.
"High-dimensional econometrics and regularized GMM,"
CeMMAP working papers
CWP35/18, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Alexandre Belloni & Victor Chernozhukov & Denis Chetverikov & Christian Hansen & Kengo Kato, 2018. "High-Dimensional Econometrics and Regularized GMM," Papers 1806.01888, arXiv.org, revised Jun 2018.
- Nicolaj N. Mühlbach, 2020. "Tree-based Synthetic Control Methods: Consequences of moving the US Embassy," CREATES Research Papers 2020-04, Department of Economics and Business Economics, Aarhus University.
- Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
- Sant’Anna, Pedro H.C. & Zhao, Jun, 2020.
"Doubly robust difference-in-differences estimators,"
Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
- Pedro H. C. Sant'Anna & Jun B. Zhao, 2018. "Doubly Robust Difference-in-Differences Estimators," Papers 1812.01723, arXiv.org, revised May 2020.
- Ruoxuan Xiong & Allison Koenecke & Michael Powell & Zhu Shen & Joshua T. Vogelstein & Susan Athey, 2021.
"Federated Causal Inference in Heterogeneous Observational Data,"
Papers
2107.11732, arXiv.org, revised Apr 2023.
- Xiong, Ruoxuan & Koenecke, Allison & Powell, Michael & Shen, Zhu & Vogelstein, Joshua T. & Athey, Susan, 2021. "Federated Causal Inference in Heterogeneous Observational Data," Research Papers 3990, Stanford University, Graduate School of Business.
- Arne Henningsen & Guy Low & David Wuepper & Tobias Dalhaus & Hugo Storm & Dagim Belay & Stefan Hirsch, 2024. "Estimating Causal Effects with Observational Data: Guidelines for Agricultural and Applied Economists," IFRO Working Paper 2024/03, University of Copenhagen, Department of Food and Resource Economics.
More about this item
NEP fields
This paper has been announced in the following NEP Reports:- NEP-EXP-2024-04-01 (Experimental Economics)
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.17042. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.