IDEAS home Printed from https://ideas.repec.org/a/sae/evarev/v48y2024i6p1088-1114.html
   My bibliography  Save this article

Cluster Randomized Trials Designed to Support Generalizable Inferences

Author

Listed:
  • Sarah E. Robertson
  • Jon A. Steingrimsson
  • Issa J. Dahabreh

Abstract

When planning a cluster randomized trial, evaluators often have access to an enumerated cohort representing the target population of clusters. Practicalities of conducting the trial, such as the need to oversample clusters with certain characteristics in order to improve trial economy or support inferences about subgroups of clusters, may preclude simple random sampling from the cohort into the trial, and thus interfere with the goal of producing generalizable inferences about the target population. We describe a nested trial design where the randomized clusters are embedded within a cohort of trial-eligible clusters from the target population and where clusters are selected for inclusion in the trial with known sampling probabilities that may depend on cluster characteristics (e.g., allowing clusters to be chosen to facilitate trial conduct or to examine hypotheses related to their characteristics). We develop and evaluate methods for analyzing data from this design to generalize causal inferences to the target population underlying the cohort. We present identification and estimation results for the expectation of the average potential outcome and for the average treatment effect, in the entire target population of clusters and in its non-randomized subset. In simulation studies, we show that all the estimators have low bias but markedly different precision. Cluster randomized trials where clusters are selected for inclusion with known sampling probabilities that depend on cluster characteristics, combined with efficient estimation methods, can precisely quantify treatment effects in the target population, while addressing objectives of trial conduct that require oversampling clusters on the basis of their characteristics.

Suggested Citation

  • Sarah E. Robertson & Jon A. Steingrimsson & Issa J. Dahabreh, 2024. "Cluster Randomized Trials Designed to Support Generalizable Inferences," Evaluation Review, , vol. 48(6), pages 1088-1114, December.
  • Handle: RePEc:sae:evarev:v:48:y:2024:i:6:p:1088-1114
    DOI: 10.1177/0193841X231169557
    as

    Download full text from publisher

    File URL: https://journals.sagepub.com/doi/10.1177/0193841X231169557
    Download Restriction: no

    File URL: https://libkey.io/10.1177/0193841X231169557?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jinyong Hahn, 1998. "On the Role of the Propensity Score in Efficient Semiparametric Estimation of Average Treatment Effects," Econometrica, Econometric Society, vol. 66(2), pages 315-332, March.
    2. Hudgens, Michael G. & Halloran, M. Elizabeth, 2008. "Toward Causal Inference With Interference," Journal of the American Statistical Association, American Statistical Association, vol. 103, pages 832-842, June.
    3. Kara E. Rudolph & Mark J. Laan, 2017. "Robust estimation of encouragement design intervention effects transported across sites," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 79(5), pages 1509-1525, November.
    4. C. A. Field & A. H. Welsh, 2007. "Bootstrapping clustered data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 69(3), pages 369-390, June.
    5. Colm O'Muircheartaigh & Larry V. Hedges, 2014. "Generalizing from unrepresentative experiments: a stratified propensity score approach," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 63(2), pages 195-210, February.
    6. Issa J. Dahabreh & Sarah E. Robertson & Eric J. Tchetgen & Elizabeth A. Stuart & Miguel A. Hernán, 2019. "Generalizing causal inferences from individuals in randomized trials to all trial‐eligible individuals," Biometrics, The International Biometric Society, vol. 75(2), pages 685-694, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Benjamin Lu & Eli Ben-Michael & Avi Feller & Luke Miratrix, 2023. "Is It Who You Are or Where You Are? Accounting for Compositional Differences in Cross-Site Treatment Effect Variation," Journal of Educational and Behavioral Statistics, , vol. 48(4), pages 420-453, August.
    2. Fan Li & Ashley L. Buchanan & Stephen R. Cole, 2022. "Generalizing trial evidence to target populations in non‐nested designs: Applications to AIDS clinical trials," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 71(3), pages 669-697, June.
    3. Susan Athey & Guido W. Imbens, 2017. "The State of Applied Econometrics: Causality and Policy Evaluation," Journal of Economic Perspectives, American Economic Association, vol. 31(2), pages 3-32, Spring.
    4. Zhaonan Qu & Ruoxuan Xiong & Jizhou Liu & Guido Imbens, 2021. "Semiparametric Estimation of Treatment Effects in Observational Studies with Heterogeneous Partial Interference," Papers 2107.12420, arXiv.org, revised Jun 2024.
    5. Rui Chen & Guanhua Chen & Menggang Yu, 2023. "Entropy balancing for causal generalization with target sample summary information," Biometrics, The International Biometric Society, vol. 79(4), pages 3179-3190, December.
    6. Xinyu Li & Wang Miao & Fang Lu & Xiao‐Hua Zhou, 2023. "Improving efficiency of inference in clinical trials with external control data," Biometrics, The International Biometric Society, vol. 79(1), pages 394-403, March.
    7. Lauren Cappiello & Zhiwei Zhang & Changyu Shen & Neel M. Butala & Xinping Cui & Robert W. Yeh, 2021. "Adjusting for population differences using machine learning methods," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 70(3), pages 750-769, June.
    8. Melody Y Huang & Harsh Parikh, 2024. "Towards Generalizing Inferences from Trials to Target Populations," Papers 2402.17042, arXiv.org, revised May 2024.
    9. Michael Pollmann, 2020. "Causal Inference for Spatial Treatments," Papers 2011.00373, arXiv.org, revised Jan 2023.
    10. Tiziano Arduini & Eleonora Patacchini & Edoardo Rainone, 2020. "Treatment Effects With Heterogeneous Externalities," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 38(4), pages 826-838, October.
    11. Dettmann, E. & Becker, C. & Schmeißer, C., 2011. "Distance functions for matching in small samples," Computational Statistics & Data Analysis, Elsevier, vol. 55(5), pages 1942-1960, May.
    12. Kyle Colangelo & Ying-Ying Lee, 2019. "Double debiased machine learning nonparametric inference with continuous treatments," CeMMAP working papers CWP72/19, Centre for Microdata Methods and Practice, Institute for Fiscal Studies.
    13. Alexander Hijzen & Sébastien Jean & Thierry Mayer, 2011. "The effects at home of initiating production abroad: evidence from matched French firms," Review of World Economics (Weltwirtschaftliches Archiv), Springer;Institut für Weltwirtschaft (Kiel Institute for the World Economy), vol. 147(3), pages 457-483, September.
    14. Anup Malani & Cynthia Kinnan & Gabriella Conti & Kosuke Imai & Morgen Miller & Shailender Swaminathan & Alessandra Voena & Bartosz Woda, 2024. "Evaluating pricing health insurance in lower-income countries: A field experiment in India," IFS Working Papers W24/33, Institute for Fiscal Studies.
    15. Sant’Anna, Pedro H.C. & Zhao, Jun, 2020. "Doubly robust difference-in-differences estimators," Journal of Econometrics, Elsevier, vol. 219(1), pages 101-122.
    16. Kitagawa, Toru & Muris, Chris, 2016. "Model averaging in semiparametric estimation of treatment effects," Journal of Econometrics, Elsevier, vol. 193(1), pages 271-289.
    17. Yi Zhang & Kosuke Imai, 2023. "Individualized Policy Evaluation and Learning under Clustered Network Interference," Papers 2311.02467, arXiv.org, revised Feb 2024.
    18. Sung Jae Jun & Sokbae Lee, 2024. "Causal Inference Under Outcome-Based Sampling with Monotonicity Assumptions," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 42(3), pages 998-1009, July.
    19. Wen Shi & Xi Chen & Jennifer Shang, 2019. "An Efficient Morris Method-Based Framework for Simulation Factor Screening," INFORMS Journal on Computing, INFORMS, vol. 31(4), pages 745-770, October.
    20. Wendy Chan, 2018. "Applications of Small Area Estimation to Generalization With Subclassification by Propensity Scores," Journal of Educational and Behavioral Statistics, , vol. 43(2), pages 182-224, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:sae:evarev:v:48:y:2024:i:6:p:1088-1114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: SAGE Publications (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.