IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2402.12528.html
   My bibliography  Save this paper

Denoised Monte Carlo for option pricing and Greeks estimation

Author

Listed:
  • Andrzej Daniluk
  • Evgeny Lakshtanov
  • Rafal Muchorski

Abstract

We present a novel technique of Monte Carlo error reduction that finds direct application in option pricing and Greeks estimation. The method is applicable to any LSV modelling framework and concerns a broad class of payoffs, including path-dependent and multi-asset cases. Most importantly, it allows to reduce the Monte Carlo error even by an order of magnitude, which is shown in several numerical examples.

Suggested Citation

  • Andrzej Daniluk & Evgeny Lakshtanov & Rafal Muchorski, 2024. "Denoised Monte Carlo for option pricing and Greeks estimation," Papers 2402.12528, arXiv.org.
  • Handle: RePEc:arx:papers:2402.12528
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2402.12528
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hilscher, Jens & Raviv, Alon, 2014. "Bank stability and market discipline: The effect of contingent capital on risk taking and default probability," Journal of Corporate Finance, Elsevier, vol. 29(C), pages 542-560.
    2. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.
    3. Emmanuel Gobet, 2009. "Advanced Monte Carlo methods for barrier and related exotic options," Post-Print hal-00319947, HAL.
    4. Dell'Era Mario, M.D., 2008. "Pricing of the European Options by Spectral Theory," MPRA Paper 17429, University Library of Munich, Germany.
    5. Christian Skaug & Arvid Naess, 2007. "Fast and accurate pricing of discretely monitored barrier options by numerical path integration," Computational Economics, Springer;Society for Computational Economics, vol. 30(2), pages 143-151, September.
    6. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    7. N. Hilber & N. Reich & C. Schwab & C. Winter, 2009. "Numerical methods for Lévy processes," Finance and Stochastics, Springer, vol. 13(4), pages 471-500, September.
    8. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    9. Jorge Ignacio Gonz'alez C'azares & Aleksandar Mijatovi'c & Ger'onimo Uribe Bravo, 2018. "Geometrically Convergent Simulation of the Extrema of L\'{e}vy Processes," Papers 1810.11039, arXiv.org, revised Jun 2021.
    10. Li, Chenxu & Ye, Yongxin, 2019. "Pricing and Exercising American Options: an Asymptotic Expansion Approach," Journal of Economic Dynamics and Control, Elsevier, vol. 107(C), pages 1-1.
    11. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    12. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    13. Tian-Shyr Dai & Yuh-Yuan Fang & Yuh-Dauh Lyuu, 2005. "Analytics for geometric average trigger reset options," Applied Economics Letters, Taylor & Francis Journals, vol. 12(13), pages 835-840.
    14. Kenichiro Shiraya & Cong Wang & Akira Yamazaki, 2021. "A general control variate method for time-changed Lévy processes: An application to options pricing," CARF F-Series CARF-F-499, Center for Advanced Research in Finance, Faculty of Economics, The University of Tokyo.
    15. Gregor Dorfleitner & Paul Schneider & Kurt Hawlitschek & Arne Buch, 2008. "Pricing options with Green's functions when volatility, interest rate and barriers depend on time," Quantitative Finance, Taylor & Francis Journals, vol. 8(2), pages 119-133.
    16. Holger Fink & Stefan Mittnik, 2021. "Quanto Pricing beyond Black–Scholes," JRFM, MDPI, vol. 14(3), pages 1-27, March.
    17. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.
    18. L. C. G. Rogers & Fanyin Zhou, 2008. "Estimating correlation from high, low, opening and closing prices," Papers 0804.0162, arXiv.org.
    19. Engelen, Peter-Jan & Kool, Clemens & Li, Ye, 2016. "A barrier options approach to modeling project failure: The case of hydrogen fuel infrastructure," Resource and Energy Economics, Elsevier, vol. 43(C), pages 33-56.
    20. Sam Howison & Mario Steinberg, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 63-89.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2402.12528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.