IDEAS home Printed from https://ideas.repec.org/a/gam/jmathe/v13y2025i2p241-d1565533.html
   My bibliography  Save this article

An Analytically Modified Finite Difference Scheme for Pricing Discretely Monitored Options

Author

Listed:
  • Guo Luo

    (Department of Mathematics, Statistics and Insurance, The Hang Seng University of Hong Kong, Hang Shin Link, Siu Lek Yuen, Shatin, N.T., Hong Kong)

  • Min Huang

    (China Merchants Bank, 7088 Shennan Boulevard, Shenzhen 518040, China)

Abstract

Finite difference methods are commonly used in the pricing of discretely monitored exotic options in the Black–Scholes framework, but they tend to converge slowly due to discontinuities contained in terminal conditions. We present an effective analytical modification to existing finite difference methods that greatly enhances their performance on discretely monitored options with non-smooth terminal conditions. We apply this modification to the popular Crank–Nicolson method and obtain highly accurate option pricing results with significantly reduced CPU cost. We also introduce an adaptive mesh refinement technique that further improves the computational speed of the modified finite difference method. The proposed method is especially useful for options with high monitoring frequencies, which are difficult to price using other existing methods.

Suggested Citation

  • Guo Luo & Min Huang, 2025. "An Analytically Modified Finite Difference Scheme for Pricing Discretely Monitored Options," Mathematics, MDPI, vol. 13(2), pages 1-29, January.
  • Handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:241-:d:1565533
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2227-7390/13/2/241/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2227-7390/13/2/241/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Gianluca Fusai & I. Abrahams & Carlo Sgarra, 2006. "An exact analytical solution for discrete barrier options," Finance and Stochastics, Springer, vol. 10(1), pages 1-26, January.
    2. Huang, Min & Luo, Guo, 2022. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    3. Mark Broadie & Paul Glasserman & Steven Kou, 1997. "A Continuity Correction for Discrete Barrier Options," Mathematical Finance, Wiley Blackwell, vol. 7(4), pages 325-349, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xie, Fei & He, Zhijian & Wang, Xiaoqun, 2019. "An importance sampling-based smoothing approach for quasi-Monte Carlo simulation of discrete barrier options," European Journal of Operational Research, Elsevier, vol. 274(2), pages 759-772.
    2. Kontosakos, Vasileios E. & Mendonca, Keegan & Pantelous, Athanasios A. & Zuev, Konstantin M., 2021. "Pricing discretely-monitored double barrier options with small probabilities of execution," European Journal of Operational Research, Elsevier, vol. 290(1), pages 313-330.
    3. C. E. Phelan & D. Marazzina & G. Germano, 2020. "Pricing methods for α-quantile and perpetual early exercise options based on Spitzer identities," Quantitative Finance, Taylor & Francis Journals, vol. 20(6), pages 899-918, June.
    4. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Legendre Multiwavelet," Papers 1703.09129, arXiv.org, revised Mar 2017.
    5. Sam Howison & Mario Steinberg, 2007. "A Matched Asymptotic Expansions Approach to Continuity Corrections for Discretely Sampled Options. Part 1: Barrier Options," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(1), pages 63-89.
    6. Lingfei Li & Vadim Linetsky, 2015. "Discretely monitored first passage problems and barrier options: an eigenfunction expansion approach," Finance and Stochastics, Springer, vol. 19(4), pages 941-977, October.
    7. A. Golbabai & L. Ballestra & D. Ahmadian, 2014. "A Highly Accurate Finite Element Method to Price Discrete Double Barrier Options," Computational Economics, Springer;Society for Computational Economics, vol. 44(2), pages 153-173, August.
    8. Phelan, Carolyn E. & Marazzina, Daniele & Fusai, Gianluca & Germano, Guido, 2018. "Fluctuation identities with continuous monitoring and their application to the pricing of barrier options," European Journal of Operational Research, Elsevier, vol. 271(1), pages 210-223.
    9. Min Huang & Guo Luo, 2019. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Papers 1905.13407, arXiv.org, revised Jun 2019.
    10. Rahman Farnoosh & Hamidreza Rezazadeh & Amirhossein Sobhani & M. Hossein Beheshti, 2016. "A Numerical Method for Discrete Single Barrier Option Pricing with Time-Dependent Parameters," Computational Economics, Springer;Society for Computational Economics, vol. 48(1), pages 131-145, June.
    11. Sesana, Debora & Marazzina, Daniele & Fusai, Gianluca, 2014. "Pricing exotic derivatives exploiting structure," European Journal of Operational Research, Elsevier, vol. 236(1), pages 369-381.
    12. Lian, Guanghua & Zhu, Song-Ping & Elliott, Robert J. & Cui, Zhenyu, 2017. "Semi-analytical valuation for discrete barrier options under time-dependent Lévy processes," Journal of Banking & Finance, Elsevier, vol. 75(C), pages 167-183.
    13. Keegan Mendonca & Vasileios E. Kontosakos & Athanasios A. Pantelous & Konstantin M. Zuev, 2018. "Efficient Pricing of Barrier Options on High Volatility Assets using Subset Simulation," Papers 1803.03364, arXiv.org, revised Mar 2018.
    14. Huang, Min & Luo, Guo, 2022. "A simple and efficient numerical method for pricing discretely monitored early-exercise options," Applied Mathematics and Computation, Elsevier, vol. 422(C).
    15. Amirhossein Sobhani & Mariyan Milev, 2017. "A Numerical Method for Pricing Discrete Double Barrier Option by Lagrange Interpolation on Jacobi Node," Papers 1712.01060, arXiv.org, revised Feb 2018.
    16. Carolyn E. Phelan & Daniele Marazzina & Gianluca Fusai & Guido Germano, 2017. "Fluctuation identities with continuous monitoring and their application to price barrier options," Papers 1712.00077, arXiv.org.
    17. Li, Zhe & Zhang, Wei-Guo & Liu, Yong-Jun & Zhang, Yue, 2019. "Pricing discrete barrier options under jump-diffusion model with liquidity risk," International Review of Economics & Finance, Elsevier, vol. 59(C), pages 347-368.
    18. Cai, Ning & Li, Chenxu & Shi, Chao, 2021. "Pricing discretely monitored barrier options: When Malliavin calculus expansions meet Hilbert transforms," Journal of Economic Dynamics and Control, Elsevier, vol. 127(C).
    19. Hilscher, Jens & Raviv, Alon, 2014. "Bank stability and market discipline: The effect of contingent capital on risk taking and default probability," Journal of Corporate Finance, Elsevier, vol. 29(C), pages 542-560.
    20. Ernst, Philip A. & Rogers, L.C.G. & Zhou, Quan, 2017. "The value of foresight," Stochastic Processes and their Applications, Elsevier, vol. 127(12), pages 3913-3927.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:13:y:2025:i:2:p:241-:d:1565533. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.